Author: Dr K GanapathyHon Distinguished Professor The Tamilnadu Dr MGR Medical University; Emeritus Professor, National Academy of Medical Sciences; Past President, Telemedicine Society of India & Neurological Society of India; Director Apollo Telemedicine Networking Foundation & Apollo Tele Health Services, India Website: www.kganapathy.in When I was asked to write a blog on women from India who have made extraordinary contributions to society, I was very surprised. Being a desi, a totally “Made in India” product, I had in the last seven decades not thought twice about the gender of any super achiever in India. When I was an Asst Professor of Neurosurgery at the globally renowned 187-year-old Madras Medical College, my unit chief was Prof T S Kanaka, celebrated as Asia’s first neurosurgeon , while the dean was also a woman, as was the Director of Medical education, the Vice Chancellor, the Health Secretary, and even the Chief Minister of the state! From 1983 I have been part of Apollo Hospitals, one of the world’s largest corporate health care providers. Though founded by the patriarch Dr Prathap C Reddy, it is his four daughters (see images below) who have ensured that this mega conglomerate is setting standards for other countries to follow. I belong to the 1968 batch of the Madras Medical College. When one of our classmates, Dr Sherin Devaskar, was elected as President of the American Pediatric Society none of us even commented that she was of female gender. Indeed, most of the achievers in our batch are women. It is just taken for granted. We are gender agnostic !! As early as 1949, Hansa Mehtha was appointed as Vice chancellor of the Baroda University. I wonder how many countries had women Vice Chancellors back then, and we were called the “third world” ! It is only now that I realise that the rest of the world has a long way to go before they accept gender neutrality. Scores of women from India have been featured in global rankings, as entrepreneurs, CEO’s of Fortune 50 companies, in the Forbes list of world’s 100 most powerful women, as Heads of some of the world’s largest banks, Chief Justices of High Courts, Supreme Court judges, Governors and Chief Ministers of states larger than most countries of the world, as Deputy Governors of the Reserve Bank of India, Chief Economist of the World Bank, and as Chief Scientist of the WHO, and so the list goes on. Indian women have gone to the Artic and Antarctic. Recently UK-based Captain Harpreet Chandi, of Indian origin, reached the South Pole after a 700 mile trek in 40 days. Lucknow-born Hashima Hasan played a major role in the design and launch of the $10bn James Webb Space Telescope. The landing of the Perseverance rover on the Red Planet following its perilous descent through the Martian atmosphere was facilitated by two women of Indian origin, Vandi Verma and Swati Mohan. Yet another, Bhavya Lal, recently took over as Associate Administrator for the Office of Technology, Policy and Strategy NASA, one of the highest posts in NASA. Nearer home there are several Director level women scientists heading critical teams dealing with human and interplanetary missions, including Ritu Karidhal, Nandini Harinath, TK Anuradha, and VR Lalithambika. And Kalpana Chawla (1962 – 2003) was the first Indian-American astronaut and first Indian woman in space. Sadly, on February 1, 2003, the U.S. space shuttle Columbia with a seven-member crew that included Chawla, disintegrated in flames over central Texas shortly before it was scheduled to land at Cape Canaveral in Florida. In this week that saw the world celebrate International Women's Day, the InnovaSpace team welcome news about the work of Dr Lucia Hartmann & Jasmin Mittag, with a new concept for the shape of future space travel and a desire to promote equality - an ethos we fully support! The "Vulva Spaceship"
The first spacecraft in a V-shape is not only a symbol for more diversity in space, but also state-of-the-art and thus more sustainable. The “Vulva Spaceship” designed by “WBF Aeronautics” represents inclusivity, varying from the traditional shapes. Thus, the project adds another dimension to the representation of humanity in space and is communicating to the world that anyone has a place in the universe, regardless of physical characteristics. Dr. Lucia Hartmann, Head of “WBF Aeronautics” and inventor of the “Vulva Spaceship” reports from her research: “The spaceship’s shape is surprisingly aerodynamic, creating way less drag when the vehicle punches through the Earth’s atmosphere. Due to this optimized V-shape, it guarantees maximum fuel efficiency with an exterior made of reinforced carbon which enables it to withstand the most extreme temperatures.” “WBF Aeronautics” wants to inspire space travel to be open to modern forms and to realise equal opportunities across the universe. The Project "WBF Aeronautics"
“WBF Aeronautics” is a collaboration between Dr. Lucia Hartmann and her team and “Wer braucht Feminismus?” (WBF). Dr. Lucia Hartmann started her research work about spaceships and discovered that a spaceship varying from traditional shapes, would be more aerodynamic and create less drag, thus being more sustainable. She reached out to us for the purpose of a collaboration and for us to do the media work as there is much more to it than just the scientific aspect. On the one hand, the topic is sensitive, but on the other hand, it also holds great opportunities. The symbol of a Spaceship in a V-shape represents more diversity in space. The project adds another dimension to the representation of humanity in space. We believe that equality even has a place in space. It’s time for new symbols in the universe. This blog is promoted and supported by the:
How can you transform the light of a star into music? To turn the data into sound I used a sonification technique that was developed by Cristian Droppelmann & Ronald Mennickent, in 2018. Rather than transforming the data as carried out by the Fourier Transform and XSonify programs, the Droppelmann and Mennickent formula translates the data into musical notes by calculating the normalized magnitude from the actual magnitude of the star, and the normalized time from the Julian dates of the observation. This can be done using MS Excel because the formula is simple and very easy to code. These normalized values have equivalent musical notes and musical rhythm, respectively, based on a table that they also created. Once translated into musical notes and rhythm, a digital audio workstation (DAW) is used to generate the audio. This audio of the light curve can then be interpreted into a musical piece. Therefore, using this method, we can generate two audios: one is the actual audio of the light curve where there is a corresponding 1:1 ratio of magnitude to musical note, and the other is a 1:1 ratio of Julian dates to musical rhythm. Most of the time, although these musical notes follow a specific key signature and family chords, there are some notes that deviate, meaning, it seems to be out of tune. That is why we also arrange it into a beautiful musical piece. The observed star – Delta Cephei, part of the constellation Cepheus The star used for the audio is called Delta Cephei (abbreviated to Del Cep), located approximately 887 light-years away. It is a Type II Cepheid – a variable star type with a period of pulsation between 1 and 50 days. Delta Cephei itself has a period of pulsation of around 5 days, with a visual magnitude that changes within the range of 3.5 to 4.4. It is one of the stars in the Cepheus constellation, as seen in the constellation image below. The Stellar Music You can check out my stellar music by listening to the two audio files below: 1) Del Cep 2448606.58 to 2448636 - the actual audio of the light curve - not arranged and follows the 1:1 ratio 2) The Joy of Cephei - the arranged audio - this is the musical piece, arranged, and some notes were manipulated for aesthetic purposes. Just remember - the sound that you hear is not from the interior of the star, rather, it is the sound that the light curve creates using the Droppelmann and Mennickent 2018 equations. I hope you enjoy the stellar music… This blog is promoted and supported by the:
Virtualmente em Marte - Minha Experiência como Astronauta Análogo na Estação Habitat Marte24/2/2022
Author: Maurício PontesOperational Safety & Crisis Manager, Pilot, Air Accident Investigator Encerramos após 11 dias (ou 11 sois, como denominamos o dia em Marte) a missão análoga (virtual) #96, celebrando quatro anos do estabelecimento da Estação Habitat Marte. Tive o privilégio de representar a InnovaSpace nessa experiência, que se revelou produtiva e instigante. As missões virtuais foram criadas em função da pandemia de COVID-19, como forma de manter a estação operando e fomentando o intercambio de experiências e informações sobre Marte e os desafios de se chegar ao planeta vermelho. A pioneira estrutura análoga, entretanto, é muito mais que isso. Localizado no agreste do Rio Grande do Norte, na cidade de Caiçara do Rio do Vento, o Habitat Marte é uma base física onde as condições inóspitas do terreno e algumas características relacionadas ao solo local propiciam um sítio ideal ao estabelecimento de missões com variados focos de pesquisa. Uma palavra que está sempre presente é sustentabilidade. Numa missão virtual, um clima de imersão e interação entre os cinco tripulantes é estimulado pela rotina de atividades como coleta de dados, apresentação de relatórios sobre o estado físico e mental e, ao longo dessa jornada, vai se criando uma atmosfera de imaginação coletiva acerca da presença no planeta vermelho, com o benefício da dinâmica das relações por interações remotas. Cada tripulante recebeu a incumbência de ser responsável por uma das estruturas críticas da estação (Estação Central e Centros de Engenharia, Saneamento, Saúde e Lançamento). Ao final, cada membro da missão fez uma apresentação sobre sua área de responsabilidade, encerrando a missão. Minha experiência pessoal na missão virtual foi ser o responsável pelo Centro de Lançamento (e retorno). Além de estar comprometido com a operacionalidade dessa área, incluí na rotina de relatórios o status “go & no go”, em função das condições técnicas ou meteorológicas, de modo a manter a estação ciente da viabilidade de um lançamento emergencial. A rotina de envio de relatórios é o grande gerador de valor para a simulação e vai ao encontro dos aspectos humanos: discutíamos situações que não decorreram de inputs do simulacro. Trocávamos informações e fotos, fomos inspirados a viver uma realidade paralela e a explorar nossa criatividade. Conversas sobre a missão e até pessoais foram constantes através de plataforma de mensagens e me mantiveram em constante “presença” naquela estação. Os dois relatórios de rotina diários (meteorologia e condições pessoais, como saúde, motivação, estado mental e satisfação com a missão e suas especificidades) eram enviados por um aplicativo e nos lembravam da nossa responsabilidade na jornada. Há potencial para ainda mais integração, pois nenhuma missão é igual à outra. Quem sabe, no futuro, um ambiente visual via aplicativo que possa até ser compartilhado com óculos de realidade virtual e celular não elevem ainda mais esses efeitos? Minha conclusão foi a de que estímulo ao pensamento, diversidade e o fator lúdico já são uma ferramenta de integração e compromisso com a missão de grande valor.
Parabéns aos tripulantes da Missão 96 e em especial ao Prof. Julio Rezende, pelo pioneirismo, determinação e criatividade. Próximo passo: a missão presencial! Author: Chris YuanCoFounder Planet Expedition Commander Academy, Explorers Club member, and Space Dreamer...
Os autores são membros do time da InnovaSpace e possuem vasta experiência profissional em medicina de aviaçāo e fisiologia aeroespacial - ensino, pesquisa e inovaçāo. O Problema Emergências médicas durante voos comerciais de curta ou longa duração, nacionais ou internacionais, estão se tornando cada vez mais comuns. Isso se deve a fatores já conhecidos, como a expansão da indústria da aviação, a popularização dos voos comerciais e a maior diversidade do perfil do viajante, incluindo passageiros idosos, portadores de doenças crônicas ou usuários de medicações. Junta-se aqui o próprio ambiente de cabine, que impõe, por exemplo, o estresse da hipóxia hipobárica, dos disbarismos pela expansão de gases de cavidades corporais, da exposição ao ar frio e seco, a ruídos, a vibrações e a acelerações, da alteração do ciclo circadiano, da fadiga e da imobilidade. Esses fatores afetam pouco ou nada os organismos sadios, mas podem ser danosos em diferentes graus ao passageiro idoso e/ou portador de doenças crônicas. A Situação Exemplo 1 – Uma avaliação clínica ou pré-operatória - Quando o motivo de uma consulta médica é uma avaliação clínica ou pré-operatória, deve-se questionar e considerar vários aspectos durante a anamnese, o exame físico e os exames laboratoriais, para se chegar a melhor decisão clínico-cirúrgica possível, reduzindo ao máximo possíveis eventos adversos, minimizando desfechos não desejados e otimizando a segurança do paciente no voo. Assim, uma pergunta não deve faltar na anamnese - “Existe o plano de uma viagem aérea num futuro próximo?”. Para que esse questionamento, no entanto, produza um impacto positivo na tomada de decisão, é mandatório que o médico assistente detenha conhecimento sobre as condições estressantes do ambiente de cabine de uma aeronave e as condições do passageiro enfermo, objetivando discutir o planejamento de um voo seguro ou até mesmo o cancelamento ou postergação do mesmo. Exemplo 2 – Médico a bordo? – Incidentes médicos com passageiros em voos comerciais vêm se tornando mais comuns. No entanto, o ambiente de cabine e os recursos médicos disponíveis a bordo de aeronaves são quase sempre de total desconhecimento dos médicos que se tornam voluntários no atendimento a um passageiro durante um voo comercial. Sistemas de auxílio às tripulações a ao médico voluntário incluem o uso da saúde digital e da telemedicina, as quais, nem sempre estão disponíveis para orientação num incidente médico a bordo. Ainda, muitos casos poderiam ter sido evitados, se, durante a avaliação pré-voo por parte do médico clínico, especialista ou cirurgião, fosse incluído na anamnese do paciente questionamentos relativos a planos de viagens de avião. A Solução A InnovaSpace vem adovagar em favor do ensino da Medicina de Aviação e da Fisiologia Aeroespacial na formação de estudantes de faculdades de medicina, através da inserção de uma série de aulas constituindo disciplinas curriculares novas ou integrando disciplinas já existentes no currículo acadêmico. Esta iniciativa é apoiada pelas Sociedade Brasileira de Medicina Aeroespacial (SBMA) e
Sociedade Portuguesa de Medicina Aeronáutica (SMAPor) Author: Karin Brünnemann, PMP®Karin Brünnemann is PMI Slovakia’s first interplanetary project manager. Karin has more than 25 years of experience managing global strategic projects. She helps companies during phases of cultural change and digital transformation. Apart from being a PMP®, Karin is also a certified trainer for intercultural management. She is currently using her project management expertise in her work as a Flight Planner for the Austrian Space Forum’s AMADEE-20 analog Mars mission. The Hydronaut project is an underwater habitat that started operations in 2020 and is currently the scene for analog space research. Dr. Miroslav Rozloznik, a Flight Planner for the Austrian Space Forum, conducted an underwater analog space mission in 2021 that was fully dedicated to science. The week-long mission, in which three analog astronauts participated, included a two-day underwater stay, and featured an EVA. Scientist-on-Board, Dr. Miroslav Rozloznik from Slovakia, conducted numerous experiments in the areas of physiology, microbiology, medicine, and space psychology. Dr. Rozloznik explained “Conducting underwater analog missions complements Moon or Mars simulations in land-based habitats. While we might not be able to test rovers, drones, or rock sampling procedures, the feeling in the underwater habitat is much more space-like. I felt very detached from Earth, even the support diver appeared like an alien, when he was looking into our porthole, dressed in his diving suit. The underwater habitat also offers the possibility to simulate more complex conditions like long periods of darkness, or variation in temperature and humidity. Furthermore, the ‘psychological safety net’ of being able to open the door and get help in case something happens, is not there. We can leave the habitat but will face several hours of decompression in cold water before we are back in a safe environment.” Part of the underwater experiments focused on the internal environment of the habitat, gathering data relating to air quality, temperature, humidity, and the microbiology of the habitat. Another area of research was dedicated to the medical and physiological well-being of the divers. Dr. Rozloznik tested novel diagnostic instruments, for example, a remote stethoscope that transmitted real-time heartbeat and breathing rates to a doctor located in the mission control center. Such equipment will be very useful for future space exploration and also has many applications for telemedicine on Earth. The crew also tested various biosensors, allowing for comparison and cross-link between physiological, neurophysiological, and psychological measurements. The InnovaSpace team welcome this contribution from Prof. Ganapathy and we send huge congratulations to the team at Apollo Telehealth Services on achieving ISO 13131 certification - a great achievement! Prof. Krishnan GanapathyPast President, Telemedicine Society of India & Neurological Society of India | Hon Distinguished Professor The Tamilnadu Dr MGR Medical University | Emeritus Professor, National Academy of Medical Sciences | Formerly Adjunct Professor IIT Madras & Anna University | Director Apollo Telemedicine Networking Foundation &, Apollo Tele Health Services | URL: www.kganapathy.in December 10th 2021 was indeed a Red letter day for Indian Telehealth. On this day the ISO 13131-2021, certification for Telehealth Services was obtained for the first time anywhere, by Apollo Telehealth Services. This brief note points out the necessity for raising the bar and setting high standards, so that the world will strive to achieve India class. For decades, Telemedicine/Telehealth services were not centre stage in the healthcare delivery system. COVID-19 changed this. The world has now accepted that the forced lockdown- enforced acceptance of Remote Health Care - will become the new normal even after the pandemic is de notified. Universal acceptance increases the responsibility of all health care providers deploying technology, to ensure constant high quality while bridging the urban-rural health divide. Quality is never an accident. It is always the result of deliberate intention, sincere effort, intelligent direction and skilful execution. Though Henry Ford opined that quality means doing it right when no one is looking, in the real world this is difficult to implement. ISO certification ensures that “Big Brother” is watching all the time. The necessity for re certification is like the Sword of Damocles hanging above us. However, it drives home the message that Quality is everyone’s responsibility at all times and not during the audit alone. One has to keep running to stay where you are. To maintain the initial global recognition, maintaining quality needs to become a habit, a unique opportunity to transform one’s DNA if necessary!! Success is the sum of small efforts, repeated day-in and day-out. Standardising systems, processes, documentation and re documentation alone will ensure providing quality remote healthcare for anyone, anytime anywhere.
International Organization for Standardization (ISO) – An OVERVIEW The, International Standards Organization, TC 215 Health Informatics Committee developed a Technical Specification, ISO/TS 13131 Telehealth services, based on a risk and quality management approach. This standard supports healthcare planning, service and workforce planning, organization responsibilities, financial and IT management. ISO was established in 1947 in Geneva, Switzerland. An Independent, non-governmental international organization it develops standards that are recognized and respected globally. It brings experts together to improve quality and provide world-class healthcare services. Experts are from 166 national standard bodies. ISO standards are developed by various advisory groups. Presently ISO has 255 technical committees, 515 subcommittees, and 2498 working bodies. Since 1947, ISO’s technical experts have created more than 18,800 standards for all possible business. ISO standards ensure that administration and product/workflow systems are carried out legally, safely and effectively. ISO technical experts have developed several assessment protocols to ensure that certified organizations apply these guidelines in their workplace. The approved protocols aid organisations to ensure that their frameworks, devices and workforce are actually in compliance with ISO standards. ISO 13131 provides recommendations on guidelines for Telehealth services deploying Information and Communication Technology (ICT) to deliver quality healthcare services. Author: Karin Brünnemann, PMP®Karin Brünnemann is PMI Slovakia’s first interplanetary project manager. Karin has more than 25 years of experience managing global strategic projects. She helps companies during phases of cultural change and digital transformation. Apart from being a PMP®, Karin is also a certified trainer for intercultural management. She is currently using her project management expertise in her work as a Flight Planner for the Austrian Space Forum’s AMADEE-20 analog Mars mission.
The AMADEE-20 analog Mars mission took place in Israel’s Negev desert during October 2021. Over the course of four weeks, an international crew of six analog astronauts conducted a number of experiments to study human behaviour and well-being; tested technical equipment, vehicles, and space suits; and deployed platforms and procedures in the areas of geoscience and life detection. A further aim of this Mars simulation was the development of a state-of-the-art Mission Support structure. I joined the AMADEE-20 team as a Flight Planner two years ago. In this role, I have been using my project management skills to help prepare and conduct scientific experiments as a member of the Mission Support team. Each experiment can be viewed as a subproject in itself and needs to be managed meticulously. There are many similarities between my work as a Project Manager on Earth and my assignment as a Flight Planner for the analog Mars mission. To begin with, a Mars mission, whether simulated or real, is of course, a project. It is humanity’s most challenging, complex, risky, and expensive project. Like any other project, it can be divided into process groups. I started work on the AMADEE-20 Mars simulation during the planning process. One of my main tasks as a Flight Planner at this stage was to obtain a full and very detailed description of the experiments (subprojects) I had been assigned to. The output of these descriptions are documents comparable to a project charter. Since time “on Mars” is very limited during the mission, resources have to be assigned very carefully to the different experiments (subprojects) in order not to run into any resource conflicts. Furthermore, just like international projects on Earth, (analog) astronauts and Mission Support team members will experience cross-cultural differences and will be trained to handle them. One major difference between the projects I am normally working on, and this Mars simulation is the detail to which experiments (subprojects) have to be managed. Usually, I plan tasks for my project teams on a daily basis. For analog Mars projects, we have to plan tasks in time slots of 15 minutes. During a simulated and later real Mars mission, astronauts must wear space suits to protect themselves from the hostile environment on our neighbouring planet. As it takes a long time to put on a space suit and as they are very heavy and not comfortable to wear and work in, the time the astronauts can spend outside their habitat is very limited and therefore, very valuable and must be scheduled in great detail. Another difference is the high risk to human life and well-being, as well as to the safety of the usually very expensive equipment. Communication also poses a big challenge. The entire team has to almost learn a new language, consisting of many acronyms specific to space exploration. Simple Earth-words like “yes” and “no” are not used, since they can easily be misunderstood; we use “affirmative” and “negative” instead to express approval or disagreement.
Despite these differences, as a certified PMP® and trained analog Mars Mission Support team member, I am well prepared to take on this challenge. And as a Project Manager, I am of course, very much enjoying to expand my skills beyond Earth and to be part of creating the future of space travel and project management. If you want to learn more about this analog Mars mission, please visit https://oewf.org/en/portfolio/amadee-20/. If you want to learn more about project management for analog Mars missions, please contact me at [email protected] or https://www.linkedin.com/in/karinbrunnemann/. InnovaSpace congratulates the hard work and dedication of Space System Engineer Marco Romero and Daniela Barbosa and their team of helpers, who dedicate their own time and resources to promoting science & technology initiatives in Angola and beyond. Well done all on your latest activity to inspire the future space generation! The Thematic Week to Celebrate Rural and Urban Development and looking at the contribution of the Education sector to sustainable development, saw the launch of 10 Editions of Space Science and Technology Comic Books, produced in Angola. “Ruvi Humbi” illustrates the life of a girl born and raised in a village in southern Angola. She dreams of reaching the stars but a conflict between the cultural and empirical knowledge of her friend Humbi and the scientific knowledge of her physics teacher makes it difficult to realize her dream of exploring the universe. “Xiamy” recounts the story of two boys who are invited to travel back in time to use the knowledge they acquired in physics and maths classes to help Punguandongo elders improve space surveillance and planetary defense techniques. “Katutu – The Space Engineer” - Young Katutu is a dreamer who goes through the phases of discovering his profession. His regular routine of life as a student and homework is interspersed with dreams in which Katutu discovers a robot with whom he learns what it is like to be a Space Systems Engineer and how he can contribute to space science and technology that changes the world. “Tropa dos Kandengues” - A group of young scientists go on a study trip to the Namibe desert, imagining its dry red landscape to be like a trip to the red planet Mars, and they apply all their knowledge acquired in classes on human and robotic exploration of the Solar System. The comic books were pre-released on November 6th, 2021 to children, educators, investors and other members of the educational system, with the ultimate aim of receiving feedback, support and contributing to the Educational community around the world. Can you help support their work in some way? Drop us a line and we can connect you! |
Welcometo the InnovaSpace Knowledge Station Categories
All
|