InnovaSpace
  • Home
  • About Us
    • Our Mission
    • Our Team
    • Board of Advisors
    • Global Partners & Friends
  • What We Do
    • Overview
    • Courses
    • Working Groups
    • Outreach
  • Regional Hubs
    • Hub Português
    • Hub Español
  • eBook Store
  • Blog
  • Resources
    • Library
    • Analog missions
    • Podcasts, Media & Websites
    • Scholarships & Grants
    • Societies & Organisations
  • Contact
  • Home
  • About Us
    • Our Mission
    • Our Team
    • Board of Advisors
    • Global Partners & Friends
  • What We Do
    • Overview
    • Courses
    • Working Groups
    • Outreach
  • Regional Hubs
    • Hub Português
    • Hub Español
  • eBook Store
  • Blog
  • Resources
    • Library
    • Analog missions
    • Podcasts, Media & Websites
    • Scholarships & Grants
    • Societies & Organisations
  • Contact
Search

BLOGS VLOGS & VIEWS

Extraterrestrial CPR and its Simulations on Earth, Air & Water

6/6/2022

 
Picture

Prof. Thais Russomano MD, MSc, PhD

CEO - InnovaSpace

Picture
Cardiopulmonary resuscitation (CPR) is a well-established part of basic life support (BLS), having saved countless lives since its first development in the 1960s. External chest compressions (ECCs), which form the main part of BLS, must be carried out until Advanced Life Support can begin. It is essential that ECCs are performed to the correct depth and frequency to guarantee effectiveness. The absence of gravity during spaceflight means that performing ECCs is more challenging.
The likelihood of a dangerous cardiac event occurring during a space mission is remote, however, the possibility does exist. Nowadays, the selection process for space missions considers individuals at ages and with health standards that would have prohibited their selection in the past. With increased age, less stringent health requirements, longer duration missions and increased physical labour, due to a rise in orbital extravehicular activity, the risk of an acute life-threatening condition occurring in space has become of greater concern. The advent of space tourism may even enhance this possibility, with its popularity set to rise over the coming years as private companies test their new technology.
Therefore, space scientists and physicians will have a greater responsibility to ensure space travellers, whether professional astronauts or space tourists, are adequately trained and familiarised with extraterrestrial BLS and CPR methods. Recently, work has been undertaken to develop methods of basic and advanced life support in microgravity and hypogravity, and several CPR techniques have been developed and tested. This blog presents one of these, the Evetts-Russomano MicroG CPR Method.
Evetts-Russomano MicroG CPR Method
​In the Evetts-Russomano (ER) method, the rescuer can respond immediately, as it requires no additional CPR equipment/medication or the use of a restraint system. To assume the position, the rescuer places their left leg over the right shoulder of the patient and their right leg around the patient’s torso, allowing their ankles to be crossed approximately in the centre of the patient’s back; this is to provide stability and a solid platform against which to deliver force, without the patient being pushed away. From this position, chest compressions can be performed while still retaining easy access to perform ventilation. When adopting the ER CPR method, the rescuer must be situated in a manner that also allows sufficient space on the patient’s chest for the correct positioning of their hands to deliver the chest compressions.
Extraterrestrial CPR simulation
The main difference between extraterrestrial and terrestrial CPR is the strength of the gravitational field. In microgravity, patient and rescuer are both essentially weightless. When thinking about the technique of terrestrial CPR, with the rescuer accelerating their chest and upper body to generate a force to compress the patient’s chest, it is obvious that this cannot work in microgravity without significant aids. To this end, the ER CPR method has been developed using a ground-based microG simulation, during parabolic flights, and subsequently tested under-water!
Video credits:
​Ground-based MicroG Simulation (land) = Space Researcher Lucas Rehnberg, MD (MicroG Center PUCRS, Brazil)
Parabolic Flight MicroG Simulation (air)= Researchers = Thais Russomano, Simon Evetts, Lisa Evetts & João Castro (ESA 29th Parabolic Flight Campaign, Bordeaux, France)
Underwater MicroG Simulation (water) = Sea King Dive Center, Chengdu, China - Instructor Gang Wei; 

Chinese Space First Responder & Space Researcher/Instructor Chris Yuan
A project of InnovaSpace, PECA and Guangxi Diving Paradise Club, China
​
Free Resource: Extraterrestrial CPR and Its Applications in Terrestrial Medicine
Authors: Thais Russomano, Lucas Rehnberg
In book: Resuscitation Aspects, Ed: Theodoros Aslanidis
Publisher: IntechOpen 2017
See Download Link at https://www.innovaspace.org/chapters.html

Mergulho no Treinamento de Astronautas

16/5/2022

 

Tiyoko Hashimoto

Instrutora de mergulho livre, mergulho autônomo e mergulhadora em formação no mergulho profissional raso LinkedIn Profile

O mergulho faz parte de uma série de habilidades para quem busca a carreira astronáutica. Por quê?
A água é cerca de 800 vezes mais densa que o ar, o que dificulta a movimentação subaquática, exigindo além de mais esforço, uma movimentação mais lenta para evitar fadiga que pode levar mergulhadores inexperientes a até abortar o mergulho.
Além disso, a flutuabilidade neutra, ou seja, a capacidade de "boiar" na água permite que o praticante tenha a sensação semelhante à da microgravidade.
Para fazer uso da flutuabilidade neutra como treinamento, as agências espaciais têm usado, ao longo dos anos, laboratórios subaquáticos como o NBL (Neutral Buoyancy Laboratory), localizado em Houston, no Texas, Estados Unidos e que faz parte do complexo da NASA. Segundo a NASA, possui 61,21 metros de comprimento, 30,90 de largura e 12,12 metros de profundidade e permite treinamentos como caminhadas espaciais, comunicação e segurança, além de permitir testes com equipamentos de vídeo e trajes espaciais.
Picture
Neutral Buoyancy Lab - Credit:NASA
Picture
Spacewalk training session - Credit:NASA
Na ESA (Agência Espacial Europeia), em Colônia, Alemanha, os astronautas são certificados no nível de mergulhadores de resgate. Esse conhecimento, segundo a ESA, permite melhor desempenho dos astronautas nas caminhadas espaciais e permite que previnam problemas e saibam lidar com emergências de modo adequado.
De acordo com a NASA, os astronautas utilizam nitrox (mistura de nitrogênio com uma porcentagem maior de oxigênio, também conhecido como ar enriquecido no mergulho) durante as sessões de treinamento no NBL.
No mergulho dependente saturado não há perda de ar, nem se solta bolhas, como ocorre no mergulho recreativo. Todo o material exalado durante um mergulho saturado, que pode ir até 320 metros de profundidade, é recaptado, reciclado, para depois ser usado novamente na respiração. Isso ocorre porque o gás em questão, além do oxigênio, é o hélio,  que tem um custo bastante elevado.

Read More

Awakening - an emotionally oriented future astronaut training subject

11/4/2022

 

Author: Chris Yuan

Member of the InnovaSpace Board of Advisors; CoFounder Planet Expedition Commander Academy (PECA), Explorers Club member, Space Dreamer...

​"Bang bang bang, bang bang," there was a knocking sound from the water.
This is an 18-foot-deep pool in the diving hall of Nanning City Gymnasium in Guangxi. Two PECA (Planet Expedition Command Academy) trainees: Hannah and Selina, wearing scuba diving gear, are stitching together a satellite model underwater, which is designed with PVC pipes of different colours that are removable and can be spliced ​​together. This training involves scuba divers simulating the role of space station EVA astronauts, capturing and repairing damaged satellites. The person under training must maintain neutral buoyancy during the whole process and retain sober analytical and hands-on ability under the conditions of maintaining air consumption, completing the assembly of the satellite model and bringing it out of the water.
Picture
Hannah & Selina working together to construct a model underwater
Hannah and Selina are mother and daughter, and Selina had just graduated from college and planned to have a gap year. The pair chose to participate in the 3-month PECA general training course. The scene just described was their training subject for PECA's second physical space, Ocean Planet: astronauts completing space missions in a simulated weightless state. They started from scratch and had already successfully completed the first physical space: Earth-Mountain Exploration, in which they completed a 10-day cross-country horseback trek on the Qinghai-Tibet Plateau, and finally entered Tibet on horseback, after completing 235 kilometres of horseback riding.
Picture
Finally they arrived in Guangxi, China and experienced a lot of confined water training, cave diving, to adapt to the exploration of the underwater world, and simulate future space travel. ​Selina had no previous experience with such a wide range of different exploration types, and when asked if she worried about whether she would be up to the challenges of the training, she said: "I chose to take this step, that is, I chose to face the unknown changes."
The PECA curriculum has been seeking a path that connects the ordinary person at one end, with at the other end the coming age of great sailing for civilian space exploration (see also previous blog).
Space exploration in the minds of most people is a national strategy, a game for a few people financially supported by the government, and super-rich people. Several of my friends have asked me a similar question, a pointed question:
"How do you think that space travel can become a majority movement in the future? How is their training program different from official astronauts?"
Allow me to start with a story.
Fifteen years ago, I rode a mountain bike alone from the Ger-mud area of ​​Qinghai to Lhasa, Tibet, and then continued on until I reached the base camp of Mount Everest. This is the highest road in the world. My journey lasted 40 days,  was 2200km and ended at the highest altitude of the Everest Base Camp. I later wrote a book "Through Your Eyes, See My Soul - 40 Days of Everest Ride". Some readers asked me the same question:
"What is the most important prerequisite for a beginner who will ride the Qinghai-Tibet line? Sufficient money or physical reserves?"
After thinking carefully, I replied: Neither of the two you mentioned are the most important, the most important thing is the ambition you have to go, it's the determination, it's the emotion. With that first push, money and other things follow."
Think about it, it took only 66 years from the Wright brothers first successful test flight of their plane to the landing of a man on the Moon!

Read More

Virtualmente em Marte - Minha Experiência como Astronauta Análogo na Estação Habitat Marte

24/2/2022

 

Author: Maurício Pontes

Operational Safety & Crisis Manager, Pilot, Air Accident Investigator

Encerramos após 11 dias (ou 11 sois, como denominamos o dia em Marte) a missão análoga (virtual) #96, celebrando quatro anos do estabelecimento da Estação Habitat Marte. Tive o privilégio de representar a InnovaSpace nessa experiência, que se revelou produtiva e instigante.
As missões virtuais foram criadas em função da pandemia de COVID-19, como forma de manter a estação operando e fomentando o intercambio de experiências e informações sobre Marte e os desafios de se chegar ao planeta vermelho. A pioneira estrutura análoga, entretanto, é muito mais que isso. Localizado no agreste do Rio Grande do Norte, na cidade de Caiçara do Rio do Vento, o Habitat Marte é uma base física onde as condições inóspitas do terreno e algumas características relacionadas ao solo local propiciam um sítio ideal ao estabelecimento de missões com variados focos de pesquisa. Uma palavra que está sempre presente é sustentabilidade.
Mauricio Pontes using software platform to join Habitat Marte Missione
Numa missão virtual, um clima de imersão e interação entre os cinco tripulantes é estimulado pela rotina de atividades como coleta de dados, apresentação de relatórios sobre o estado físico e mental e, ao longo dessa jornada, vai se criando uma atmosfera de imaginação coletiva acerca da presença no planeta vermelho, com o benefício da dinâmica das relações por interações remotas. Cada tripulante recebeu a incumbência de ser responsável por uma das estruturas críticas da estação (Estação Central e Centros de Engenharia, Saneamento, Saúde e Lançamento). Ao final, cada membro da missão fez uma apresentação sobre sua área de responsabilidade, encerrando a missão.
Minha experiência pessoal na missão virtual foi ser o responsável pelo Centro de Lançamento (e retorno). Além de estar comprometido com a operacionalidade dessa área, incluí na rotina de relatórios o status “go & no go”, em função das condições técnicas ou meteorológicas, de modo a manter a estação ciente da viabilidade de um lançamento emergencial. A rotina de envio de relatórios é o grande gerador de valor para a simulação e vai ao encontro dos aspectos humanos: discutíamos situações que não decorreram de inputs do simulacro. Trocávamos informações e fotos, fomos inspirados a viver uma realidade paralela e a explorar nossa criatividade.
Mars simulation model for Habitat Marte mission
Mars simulation model habitat with rocket in background
​Conversas sobre a missão e até pessoais foram constantes através de plataforma de mensagens e me mantiveram em constante “presença” naquela estação. Os dois relatórios de rotina diários (meteorologia e condições pessoais, como saúde, motivação, estado mental e satisfação com a missão e suas especificidades) eram enviados por um aplicativo e nos lembravam da nossa responsabilidade na jornada. Há potencial para ainda mais integração, pois nenhuma missão é igual à outra. Quem sabe, no futuro, um ambiente visual via aplicativo que possa até ser compartilhado com óculos de realidade virtual e celular não elevem ainda mais esses efeitos?
Conversas sobre a Habitat Marte missão foram constantes
​Minha conclusão foi a de que estímulo ao pensamento, diversidade e o fator lúdico já são uma ferramenta de integração e compromisso com a missão de grande valor.
Parabéns aos tripulantes da Missão 96 e em especial ao Prof. Julio Rezende, pelo pioneirismo, determinação e criatividade. Próximo passo: a missão presencial!

Fools dreaming - the story of astronauts who simulated SPACE walking in China...

13/2/2022

 

Author: Chris Yuan

CoFounder Planet Expedition Commander Academy, Explorers Club member, and Space Dreamer...

Picture
​Looking up at the stars and yearning to explore the unknown depths of space must have been written by God into human genes.
Xinjiang, Inner Mongolia, and the Qinghai-Tibet Plateau in western China have many inaccessible and barren desert landforms, similar to the Moon and Mars. When arriving in these geographic environments and looking up at the distant stars and gleaming Milky Way in the night sky, many tourists say: "I only know now that we live in the universe, this place is so alien!".
Although China is a country with developed aerospace in the world, the aerospace industry is more like a symbol of pride for the country and the nation. Ordinary people do not have many paths to truly experience space exploration. But the role of the "genes" of human space exploration is powerful.
Since 2019, the abandoned oil base in Delingha City, Qinghai, China, and the Gobi Desert of the Great Highway in Xinjiang, some tourism agencies and private companies have begun to build some buildings that simulate alien habitats to receive and develop some groups of tourists. summer camp students. For self-driving tourists who come here, most of them will stop for a short time and rent a prop spacesuit to take pictures. The price of renting a spacesuit is 75-150 US dollars an hour.
Vertical Divider
​仰望星空和向往探索未知的太空应该是上帝写在某些人类基因里的奥秘。
中国西部的新疆,内蒙古,以及青藏高原有着许多人迹罕至,寸草不生的戈壁,沙漠,雅丹地貌,类似月球和火星的地貌。
许多游客到达这些地理环境,在黑夜中看到头顶久违的星空闪烁,熠熠生辉的银河时,他们就会说:“我现在才知道我们是生活在宇宙之中,这个地方太像在外星了!”
中国虽然是世界上航天发达的国家,航天事业更像是国家和民族的骄傲象征,普通人并没有多少路径可以去真实体验太空探索。但是人类太空探索的“基因”的作用是强大的。
自2019年开始,中国青海德令哈市辖区的废弃的石油基地,新疆的大海道的戈壁滩上,一些旅游机构,私人企业开始建造一些模拟外星栖息地的建筑来接待开发一些一些成团的夏令营学生。对于慕名而来的的自驾车游客,他们多半会短暂停留,租一套道具宇航服拍照留念,出租宇航服的价格在75-150美元一小时。
Picture
The Qinghai-Tibet Plateau, also known as Earth’s Third Pole, is at high altitude and has strong ultraviolet rays. Since 2019, we have designed and planned the "Future Astronaut Training Camp", the predecessor of today's PECA (Planet Expedition Command Academy). In this program, the design, construction and wearing of a prop spacesuit to simulate an extraterrestrial walk is the finale of the training camp graduation.
Vertical Divider
​青藏高原是地球的第三极,海拔高,紫外线强。自2019年开始,我们设计和策划了“未来宇航员训练营”,就是今天的PECA(Planet Expedition Command Academy) 的前身。在这个计划中,外星栖息地的设计,建造和穿道具宇航服模拟外星行走是训练营毕业的压轴戏。
Picture

Read More

“Science On Board”: Space Research Begins Underwater

12/1/2022

 

Author: Karin Brünnemann, PMP®

Karin Brünnemann is PMI Slovakia’s first interplanetary project manager. Karin has more than 25 years of experience managing global strategic projects. She helps companies during phases of cultural change and digital transformation. Apart from being a PMP®, Karin is also a certified trainer for intercultural management. She is currently using her project management expertise in her work as a Flight Planner for the Austrian Space Forum’s AMADEE-20 analog Mars mission.

Picture
​The Hydronaut project is an underwater habitat that started operations in 2020 and is currently the scene for analog space research.  Dr. Miroslav Rozloznik, a Flight Planner for the Austrian Space Forum, conducted an underwater analog space mission in 2021 that was fully dedicated to science. The week-long mission, in which three analog astronauts participated, included a two-day underwater stay, and featured an EVA. Scientist-on-Board, Dr. Miroslav Rozloznik from Slovakia, conducted numerous experiments in the areas of physiology, microbiology, medicine, and space psychology.
 
Dr. Rozloznik explained “Conducting underwater analog missions complements Moon or Mars simulations in land-based habitats. While we might not be able to test rovers, drones, or rock sampling procedures, the feeling in the underwater habitat is much more space-like. I felt very detached from Earth, even the support diver appeared like an alien, when he was looking into our porthole, dressed in his diving suit. The underwater habitat also offers the possibility to simulate more complex conditions like long periods of darkness, or variation in temperature and humidity. Furthermore, the ‘psychological safety net’ of being able to open the door and get help in case something happens, is not there. We can leave the habitat but will face several hours of decompression in cold water before we are back in a safe environment.”

Picture
A diver during EVA. Image credit: @Hydronautproject
Part of the underwater experiments focused on the internal environment of the habitat, gathering data relating to air quality, temperature, humidity, and the microbiology of the habitat. Another area of research was dedicated to the medical and physiological well-being of the divers. Dr. Rozloznik tested novel diagnostic instruments, for example, a remote stethoscope that transmitted real-time heartbeat and breathing rates to a doctor located in the mission control center. Such equipment will be very useful for future space exploration and also has many applications for telemedicine on Earth. The crew also tested various biosensors, allowing for comparison and cross-link between physiological, neurophysiological, and psychological measurements.
Picture
Hydronaut Mission 2 crew, from right: Frantisek Harant, Matyas Sanda and Dr. Miroslav Rozloznik. Image credit: Petr Toman @Hydronautproject
Picture
During medical check-up. Image credit: Petr Toman @Hydronautproject

Read More

Humanity’s Most Challenging Project: From Project Manager on Earth to Flight Planner for an analog Mars mission

3/1/2022

 

Author: Karin Brünnemann, PMP®

Karin Brünnemann is PMI Slovakia’s first interplanetary project manager. Karin has more than 25 years of experience managing global strategic projects. She helps companies during phases of cultural change and digital transformation. Apart from being a PMP®, Karin is also a certified trainer for intercultural management. She is currently using her project management expertise in her work as a Flight Planner for the Austrian Space Forum’s AMADEE-20 analog Mars mission.

Picture
Following the 50th anniversary of the first Moon landing (July 20, 1969) and more recent progress in space technology, interest in space activities has increased again. Agencies like NASA and ESA, space organizations in China or India, as well as some private companies, have plans to send humans to Mars. Such a mission to Mars obviously needs diligent preparation. Vehicles, tools, and space suits have to be tested, experiments and procedures need to be assessed. Most importantly, we have to understand the impact a journey to Mars will have on the astronauts who will travel there. To evaluate all these factors and to train future astronauts, organizations like the Austrian Space Forum, have been organizing analog Mars missions for some years already. An analog Mars mission is a mission on earth in a Mars-like environment, where analog astronauts test space suits, tools, vehicles, and procedures that will in the future be used on expeditions to our neighbouring planet.
​The AMADEE-20 analog Mars mission took place in Israel’s Negev desert during October 2021. Over the course of four weeks, an international crew of six analog astronauts conducted a number of experiments to study human behaviour and well-being; tested technical equipment, vehicles, and space suits; and deployed platforms and procedures in the areas of geoscience and life detection. A further aim of this Mars simulation was the development of a state-of-the-art Mission Support structure. I joined the AMADEE-20 team as a Flight Planner two years ago. In this role, I have been using my project management skills to help prepare and conduct scientific experiments as a member of the Mission Support team. Each experiment can be viewed as a subproject in itself and needs to be managed meticulously.
PictureSarah Feilmayr/OeWF (Austrian Space Forum)©
​There are many similarities between my work as a Project Manager on Earth and my assignment as a Flight Planner for the analog Mars mission. To begin with, a Mars mission, whether simulated or real, is of course, a project. It is humanity’s most challenging, complex, risky, and expensive project. Like any other project, it can be divided into process groups. I started work on the AMADEE-20 Mars simulation during the planning process. One of my main tasks as a Flight Planner at this stage was to obtain a full and very detailed description of the experiments (subprojects) I had been assigned to. The output of these descriptions are documents comparable to a project charter. Since time “on Mars” is very limited during the mission, resources have to be assigned very carefully to the different experiments (subprojects) in order not to run into any resource conflicts. Furthermore, just like international projects on Earth, (analog) astronauts and Mission Support team members will experience cross-cultural differences and will be trained to handle them.

One major difference between the projects I am normally working on, and this Mars simulation is the detail to which experiments (subprojects) have to be managed. Usually, I plan tasks for my project teams on a daily basis. For analog Mars projects, we have to plan tasks in time slots of 15 minutes. During a simulated and later real Mars mission, astronauts must wear space suits to protect themselves from the hostile environment on our neighbouring planet. As it takes a long time to put on a space suit and as they are very heavy and not comfortable to wear and work in, the time the astronauts can spend outside their habitat is very limited and therefore, very valuable and must be scheduled in great detail. Another difference is the high risk to human life and well-being, as well as to the safety of the usually very expensive equipment. Communication also poses a big challenge. The entire team has to almost learn a new language, consisting of many acronyms specific to space exploration. Simple Earth-words like “yes” and “no” are not used, since they can easily be misunderstood; we use “affirmative” and “negative” instead to express approval or disagreement.
Despite these differences, as a certified PMP® and trained analog Mars Mission Support team member, I am well prepared to take on this challenge. And as a Project Manager, I am of course, very much enjoying to expand my skills beyond Earth and to be part of creating the future of space travel and project management.
 
If you want to learn more about this analog Mars mission, please visit https://oewf.org/en/portfolio/amadee-20/. If you want to learn more about project management for analog Mars missions, please contact me at karin@4CEE.eu or https://www.linkedin.com/in/karinbrunnemann/.
Picture
Mars panorama taken by Exploration Rover Spirit (2005). Image source: NASA Jet Propulsion Laboratory

Two Worlds...

14/4/2021

 
As ESA-sponsored Dr Stijn Thoolen comes closer to the end of his year at the Concordia research station in Antarctica, he begins to reflect on his experiences of the last year and the journey homewards. Enjoy the rest of his fascinating blog series by following the links: Part 1, Part 2, Part 3, Part 4, Part 5, Part 6, Part 7, Part 8, Part 9, Part 10

Dr Stijn Thoolen

Medical Research Doctor, Concordia Research Station, Antarctica

Picture
Concordia, October 4, 2020
Sunlight: about 14 hours per day
Windchill temperature: -85 °C
Mood: excited, but there is a pinch of nostalgia. Already…
It’s 1:00 AM. I am lying outside on the roof, together with Ines (glaciologist), Elisa (cook) and Andrea (vehicle mechanic). There is a full moon shining on us, and Mars is right next to it. I am not much of an astronomer, but its bright color stands out so clearly from all the other celestial objects that even I can recognize it instantly as the Red Planet. Looking to the southwest I see Jupiter and Saturn. Also pretty hard to miss. Usually that is where I find the Milky Way, but there is too much light now, even at this hour. An amber color brightens the horizon, beyond which I now realize again there are just so many miles of ice (something easily taken for granted here, but thinking back to that inbound flight to Concordia last year does the trick) separating us from the rest of the world. In front of it all, I look at the frosty metal bars, which always looked so surrealistic to me when I saw pictures of them back home. They have gone through winter as well…
How will it be to go back home? With only one more month before the first plane arrives, I can’t help myself trying to picture how things will look when we return to ‘Earth’. And I have to admit: sometimes I look forward to a change. Not-so-constructive or even aggressive discussions, distance-creating demotivating remarks from others, and at times a lack of respect, understanding and team spirit: it is obvious that the winter has left its marks in our crew. At those moments I just wish to be among the people that are close to me again. My girlfriend, my family, my friends, who all seem to understand me down to a much deeper level. In a way the approaching summer is exciting.
Picture
A moment of realization. Credits: ESA/IPEV/PNRA–S. Thoolen
The return of the sun was cool. ‘Here comes the sun’ (you know, that one from the Beatles) was heard all over the station while we impatiently and excitedly tried to catch a first glimpse of it mid-August. Since that moment the skies have become more and more blue, and the snow more and more bright. I have experienced the gradual return of daylight over the past weeks with a positive and fresh feeling, and a sense of anticipation has started to take hold of the station. Who are the people who will replace us? What are our plans after Concordia? I remember myself some weeks ago, lying in exactly the same position as I am right now, outside against a snow dune, sheltered from the wind and with a pleasant -50 degrees Celsius (I realize this perception must be taken relatively…), alone, and just letting the sunshine touch my face again. A special moment, that reminded me of how pleasant summer conditions are going to be.

Read More

Let's Talk Science, Part 4: SEX

20/3/2021

 
ESA-sponsored Dr Stijn Thoolen delivers the last part of his 'Let's Talk Science' blogs, written during his year at the Concordia research station in Antarctica. Catch-up with his previous blogs at Part 1, Part 2, Part 3, Part 4, Part 5, Part 6, Part 7, Part 8, Part 9

Dr Stijn Thoolen

Medical Research Doctor, Concordia Research Station, Antarctica
​

But there is more to the ESA lab, and I have saved the best for last. So, now that you are probably overloaded with theories and facts, let’s talk about something very different. Let’s talk about sex!
And before we continue, you have to promise me to turn on another song, to end this blog with some appropriate groove.
So, sex at Concordia… Well, to tell you the truth, there doesn’t seem much to it. At least, I haven’t seen it. Maybe there has been more excitement in other crews, but with my girlfriend on the other side of the globe I couldn’t agree more with the wisdom of Apsley Cherry-Garrard, a member of the famous and ill-fated Terra Nova expedition to the South Pole in 1910-1913:
‘Both sexually and socially the polar explorer must make up his mind to be starved’​
But maybe there is more to it than it seems, and what Cherry-Garrard says is not necessarily easy to do. We are human, after all. Sexuality is one of our core features, vital for our existence, and for many it is a fundamental source of pleasure, intimacy, bonding, and social relations. Researchers have shown how sexual deprivation can lead to frustration, anger and even depression, and also seen from a group perspective anecdotal accounts have shown that sexual desire and related feelings of jealousy and competition can lead to adaptation problems in extreme environments. Including Concordia!
​
But the problem with sex it that we don’t easily talk about it. Perhaps it is so close to our core that opening up about it can make us feel vulnerable. A sensitive topic, and while researchers are currently busy figuring out how to compose future space crews in terms of culture, personality and gender, data about sexual behaviour and its effects on team dynamics in extreme environments is basically non-existent! How do we cope? How, why, and when do we suffer? Recent political debates and scandals of sexual harassment have already highlighted the importance of having a work environment free of sexual hostility, and if you ask me, it would be irresponsible to send humans on a multi-billion dollar long-duration mission to Mars without being able to answer these questions!
As such, the project SWICE (‘sexual well-being and sexual security in isolated, confined and extreme environments’), for the first time in spaceflight research history, is breaking the taboo. As the first study of its kind, it aims to gather basic information about human sexuality while living in isolation and confinement, and it does so by making us in Concordia talk:
​
‘How often does another Concordia inhabitant asks me for sexual favours?’ (we better forget the jokes at the dinner table…), ‘How often does another Concordia inhabitant produces sexually explicit graffiti for display at Concordia?’ (we better forget the sexually explicit Play-Doh creations we made with the whole crew last month…), ‘How enjoyable is your sexual life right now?’, ‘How often do you masturbate?’, ‘How often do you experience an orgasm?’ (Damn, you want to know everything!).

Read More

Let's talk science, Part 3: Mindfulness

6/3/2021

 
​We continue to follow along with the wonderful experience of ESA-sponsored Dr Stijn Thoolen during his year spent at the Concordia research station in Antarctica. Catch-up with his previous blogs at Part 1, Part 2, Part 3, Part 4, Part 5, Part 6, Part 7, Part 8

Dr Stijn Thoolen

Medical Research Doctor, Concordia Research Station, Antarctica

Fortunately it is not all body fluids (and solids) in the ESA lab. Other projects are more interested in the psychological adaptation to space-like environments. How do we deal mentally with the isolation far from home, the confinement, monotony, and life in a small international crew? The experiences and stressors that crews face during such missions require a certain degree of mental resilience, or may otherwise result in cognitive or behavioural problems and a loss of performance that can be dangerous to both the crew and the mission. To facilitate such psychological adaptation and resilience, the scientists behind MINDFULICE (‘role of mindfulness disposition in an isolated and confined environment’) for example are investigating the use of ‘mindfulness’ as a tool for deep space missions.

‘But isn’t that something for Buddhist monks?’, I hear you question…
​
I actually like to think it is quite the opposite. And although maybe it isn’t an easy construct to grasp, we are all already mindful to a certain degree. Perhaps it is best to think of it as a mental process, of being aware in the present moment, welcoming what is new with an intention of kindness and compassion, and being open-minded enough to see new possibilities in any given situation rather than relying on what you have previously learned. Everyone does that to a certain degree, but everyone can also learn to do it more.
Picture
Mindfulness is a process of actively making new distinctions about a situation and its environment, rather than relying on previous categories. Credits: Gary Larson, Far Side
Perhaps that is the biggest reason that the concept is gaining so much popularity so quickly. In our stressful and busy lives, mindfulness helps us to see solutions rather than problems, and research has already demonstrated many of its benefits, spanning from health and well-being to even business and artistic endeavours! A mindful attitude has shown to reduce stress while increasing resilience, task performance, enjoyment, psychological and even physical well-being, and in general a higher quality of life. That, I would say, is the promising power of the mind!
So can mindfulness also help astronauts to cope with the harshness of a deep space mission? We like to think so, but to find out we must first understand how it relates to stress and psychological wellbeing in such conditions, and Concordia serves as the ideal testing ground. Of course that means more tests for us, so over the year we fill in questionnaires and perform attention tasks to determine how mind- and stressful we actually are. And how about you? Are you mindful enough to one day float to the stars?
Picture
An excellent demonstration of the power of the mind. Keeping your attention is not always easy in Concordia... Credits: ESA/IPEV/PNRA–S. Thoolen
Note: this article was originally posted on the ESA blog website (LINK) and permission has been obtained to republish it here.
<<Previous

    Welcome

    to the InnovaSpace Knowledge Station

    Categories

    All
    Aerospace
    Astronaut For A Day
    Astronomy
    Education
    Empowering Girls
    Extreme Environments
    Health
    Hub Español
    Hub Português
    Humanities
    KidsBlog
    Mars
    Outreach Activities
    Photo Blog
    Research
    Space Analogues
    Space Art
    Space Medicine
    Space News
    Space Physiology
    Space Psychology
    Space Technology
    Space Tourism
    STEM / STEAM
    Team News
    Telemedicine
    Working Groups

    RSS Feed

Home

Mission

Team

​What We Do

Events

Blog

Contact

InnovaSpace Ltd - Registered in England & Wales - No. 11323249
UK Office: 88 Tideslea Path, London, SE280LZ
​Privacy Policy  I Terms & Conditions
© 2021 InnovaSpace, All Rights Reserved 

  • Home
  • About Us
    • Our Mission
    • Our Team
    • Board of Advisors
    • Global Partners & Friends
  • What We Do
    • Overview
    • Courses
    • Working Groups
    • Outreach
  • Regional Hubs
    • Hub Português
    • Hub Español
  • eBook Store
  • Blog
  • Resources
    • Library
    • Analog missions
    • Podcasts, Media & Websites
    • Scholarships & Grants
    • Societies & Organisations
  • Contact