Authors: The Team: Life - To & BeyondAn initiative to carry out research & outreach activities related to Astrobiology & Space-allied Studies 'Life' is the most dynamic entity known to humanity and is central to our existence. In this, 'Space Sciences' is one of the most multi-disciplinary fields of human endeavour. Therefore, to celebrate the interdependence between 'Life' and 'Space', we, as a group of space enthusiasts, initiated a non-profit community named "Life- To & Beyond" or "L-T&B" on the 8th of February, 2022. Why us? Life- To implies Astrobiology, i.e. the scientific study of the origin, evolution, and distribution of life in the cosmos, and Life- Beyond implies Space-Allied Studies, i.e. humanity's current efforts to move beyond our planet and simultaneously conserve its novelty. Thus, as our name implies, we aspire to figure out more about Life and Space, which, in turn, are the two sides of the same coin, known as the 'Universe'. Our Vision and Mission:
We, the members of team L-T&B, firmly believe that 'to explore is to be Human', and so, we rejoice 'Life' as a 'Cosmic Phenomenon' by attempting to: • Figure out the chronicle of our past (i.e. from the big bang and even beyond to conscious life on earth); • Work on our present (i.e. our current efforts to move beyond our planet and at the very same time conserve its unique richness); and • Create a glorious future for humans (i.e. our ultimate fate in the universe). Furthermore, we have the vision to generate awareness and create an impact in every community and country in the world by creating local or accessible opportunities for learning and research concerning Space sciences and STEAM fields with a special focus on Astrobiology and Space-Allied Studies (i.e., Space Pharmacy, Space Biotechnology, Analog missions, Space robotics, space architecture, etc.). To turn our vision into a reality, we vow to engage in Research, Communication, and Outreach concerning our focus areas. Additionally, to spice up our enterprise, we work towards bringing about an intra-, inter-, multi-, and trans-disciplinary approach in whatever we do, including making quality education and research opportunities (and facilities) available to all. To fuel this initiative, we have taken the onerous on us to share information about events and opportunities related to space sciences with all. Cardiopulmonary resuscitation (CPR) is a well-established part of basic life support (BLS), having saved countless lives since its first development in the 1960s. External chest compressions (ECCs), which form the main part of BLS, must be carried out until Advanced Life Support can begin. It is essential that ECCs are performed to the correct depth and frequency to guarantee effectiveness. The absence of gravity during spaceflight means that performing ECCs is more challenging. The likelihood of a dangerous cardiac event occurring during a space mission is remote, however, the possibility does exist. Nowadays, the selection process for space missions considers individuals at ages and with health standards that would have prohibited their selection in the past. With increased age, less stringent health requirements, longer duration missions and increased physical labour, due to a rise in orbital extravehicular activity, the risk of an acute life-threatening condition occurring in space has become of greater concern. The advent of space tourism may even enhance this possibility, with its popularity set to rise over the coming years as private companies test their new technology. Therefore, space scientists and physicians will have a greater responsibility to ensure space travellers, whether professional astronauts or space tourists, are adequately trained and familiarised with extraterrestrial BLS and CPR methods. Recently, work has been undertaken to develop methods of basic and advanced life support in microgravity and hypogravity, and several CPR techniques have been developed and tested. This blog presents one of these, the Evetts-Russomano MicroG CPR Method. Evetts-Russomano MicroG CPR Method In the Evetts-Russomano (ER) method, the rescuer can respond immediately, as it requires no additional CPR equipment/medication or the use of a restraint system. To assume the position, the rescuer places their left leg over the right shoulder of the patient and their right leg around the patient’s torso, allowing their ankles to be crossed approximately in the centre of the patient’s back; this is to provide stability and a solid platform against which to deliver force, without the patient being pushed away. From this position, chest compressions can be performed while still retaining easy access to perform ventilation. When adopting the ER CPR method, the rescuer must be situated in a manner that also allows sufficient space on the patient’s chest for the correct positioning of their hands to deliver the chest compressions. Extraterrestrial CPR simulation The main difference between extraterrestrial and terrestrial CPR is the strength of the gravitational field. In microgravity, patient and rescuer are both essentially weightless. When thinking about the technique of terrestrial CPR, with the rescuer accelerating their chest and upper body to generate a force to compress the patient’s chest, it is obvious that this cannot work in microgravity without significant aids. To this end, the ER CPR method has been developed using a ground-based microG simulation, during parabolic flights, and subsequently tested under-water! Video credits: Ground-based MicroG Simulation (land) = Space Researcher Lucas Rehnberg, MD (MicroG Center PUCRS, Brazil) Parabolic Flight MicroG Simulation (air)= Researchers = Thais Russomano, Simon Evetts, Lisa Evetts & João Castro (ESA 29th Parabolic Flight Campaign, Bordeaux, France) Underwater MicroG Simulation (water) = Sea King Dive Center, Chengdu, China - Instructor Gang Wei; Chinese Space First Responder & Space Researcher/Instructor Chris Yuan A project of InnovaSpace, PECA and Guangxi Diving Paradise Club, China Free Resource: Extraterrestrial CPR and Its Applications in Terrestrial Medicine
Authors: Thais Russomano, Lucas Rehnberg In book: Resuscitation Aspects, Ed: Theodoros Aslanidis Publisher: IntechOpen 2017 See Download Link at https://www.innovaspace.org/chapters.html Girls from Kazakhstan, Kyrgyzstan and Uzbekistan have launched nanosatellites to analyse air pollution, as reported by the UNICEF Office in Kyrgyzstan. According to the organisation, three nanosatellites were created by participants of the UniSat educational program, within a joint project between UNICEF and the Al-Farabi Kazakh National University. The organisation further reported that - "nanosatellites, which belong to the class of small spacecraft, weigh up to 10 kilograms and are equipped with several cameras, one of which is capable of capturing elliptical images of the Earth with 4K resolution. During launch, UniSats allow you to capture stunning high-resolution images of the Earth and space. Sensors collect data on radiation, pressure, gravity, light and gas composition, and large amounts of data, video and images are sent back to Earth for analysis." "The launch of the nanosatellites is symbolic. It demonstrates the limitless potential of girls and women in Central Asia. Their ability to push the boundaries of science and technology. We are extremely pleased that this year we were able to include 2,000 female participants from the three countries in the program and inspire them to continue their education and careers in science, technology, engineering and mathematics. We believe that the results of the UniSAT program will bring a cosmic change in society." The nanosatellites were created by the girls as part of a 10-day marathon. The project participants mastered the design, engineering, programming, and assembly of the spacecraft. They were able to visit the centre for space technology and remote sensing, and the theoretical knowledge they gained was immediately put in practice during the classes. Under the mentors’ guidance, they designed nanosatellite bodies using 3D modelling and printed them on a 3D printer. The girls also programmed UniSat subsystems and tested them in the lab before launch. "In Kyrgyzstan, only one in three girls aged 15-19 is computer literate, and more than 80 percent of girls choose social and human sciences. But how much do these choices reflect girls’ professional interests and aspirations? That’s why UNICEF launched Girls in Science in 2020 to help them expand their horizons, overcome gender stereotypes, and make their career choices. Every year, more than 10,000 girls join the initiative and more girls gain confidence in developing a career in science. In this context, the nanosatellite launch event is not only the result of two years of work for us, but also an inspiration for the potential of girls and our youth." The UniSat program is supported by the Dubai Cares International Education Foundation, Clé de Peau Beauté brand, and philanthropist Nazanin Alakija Article originally published (28/03/2022) in Russian on the website 24.Kg - LINK
Our thanks to Myrza Karimov (University of Central Asia) for supplying InnovaSpace with the version translated into English Tiyoko HashimotoInstrutora de mergulho livre, mergulho autônomo e mergulhadora em formação no mergulho profissional raso LinkedIn Profile O mergulho faz parte de uma série de habilidades para quem busca a carreira astronáutica. Por quê? A água é cerca de 800 vezes mais densa que o ar, o que dificulta a movimentação subaquática, exigindo além de mais esforço, uma movimentação mais lenta para evitar fadiga que pode levar mergulhadores inexperientes a até abortar o mergulho. Além disso, a flutuabilidade neutra, ou seja, a capacidade de "boiar" na água permite que o praticante tenha a sensação semelhante à da microgravidade. Para fazer uso da flutuabilidade neutra como treinamento, as agências espaciais têm usado, ao longo dos anos, laboratórios subaquáticos como o NBL (Neutral Buoyancy Laboratory), localizado em Houston, no Texas, Estados Unidos e que faz parte do complexo da NASA. Segundo a NASA, possui 61,21 metros de comprimento, 30,90 de largura e 12,12 metros de profundidade e permite treinamentos como caminhadas espaciais, comunicação e segurança, além de permitir testes com equipamentos de vídeo e trajes espaciais. Na ESA (Agência Espacial Europeia), em Colônia, Alemanha, os astronautas são certificados no nível de mergulhadores de resgate. Esse conhecimento, segundo a ESA, permite melhor desempenho dos astronautas nas caminhadas espaciais e permite que previnam problemas e saibam lidar com emergências de modo adequado.
De acordo com a NASA, os astronautas utilizam nitrox (mistura de nitrogênio com uma porcentagem maior de oxigênio, também conhecido como ar enriquecido no mergulho) durante as sessões de treinamento no NBL. No mergulho dependente saturado não há perda de ar, nem se solta bolhas, como ocorre no mergulho recreativo. Todo o material exalado durante um mergulho saturado, que pode ir até 320 metros de profundidade, é recaptado, reciclado, para depois ser usado novamente na respiração. Isso ocorre porque o gás em questão, além do oxigênio, é o hélio, que tem um custo bastante elevado.
Our thanks go to space enthusiast Ermis Divinis, aged 11, who used his digital media skills to create this fun summary of the Mars rovers, which have provided the scientific community with so much valuable data about the Red Planet. Enjoy!
Tomas DucaiStudent of biology (microbiology/genetics), University of Vienna - Space (medicine) enthusiast Indulging in memories, I honestly cannot say at which exact time point in the past my interest in astronomy arose. Nevertheless, in this context, I do remember a memorable experience that occurred when I was a pupil at primary school in Vienna, where I live with my parents. At that time, being an active wheelchair-user, I regularly attended an adventure holiday camp in Slovakia – my country of origin – which was funded especially for kids and adolescents with physical disabilities and the venue location changes with every year. One year, the adventure holiday camp took place in the Slovakian mountains – the High Tatras. Besides a flight in an ultralight-airplane and rafting, we also spent a night out in the open air at the terrace of Slovakia’s second highest mountain, called Lomnický štít, at 2634 meters above sea-level. Looking up at and observing thousands of stars in the night sky left a strong impression on my child’s mind, thinking it very brave as a wheelchair-user to be spending a night in quite an unusual environment, and wondering what it might be like to experience outer space and questioning the reason behind the cohesion of the universe… With my entry into grammar school, I couldn’t wait for the first year to pass in order to experience physics lessons from my second year onwards. I was very lucky to be taught by a particular teacher (biology from my first year, then physics) who taught her subjects with unbelievable enthusiasm, which transferred to me from the first moment. Realising that astronomy is a sub-discipline of physics motivated me even more to follow the fascinating physics lessons of my favourite teacher, and I was honoured to be accompanied by her in biology until my graduation exam. My experience with a further two physics teachers led to my gaining valuable advice on literature, resulting in my beginning to read the children’s books of the famous British astrophysicist Stephen Hawking, and enjoying them to the fullest. As time passed, I also read the other popular scientific books from this great astrophysicist, who developed into an idol in science for me, not only because of his remarkable scientific findings, centred upon black holes, such as the information paradox of black holes, but also because of his personal history, having a motor neuron disease, called amyotrophic lateral sclerosis, resulting in being physically paralysed in an electric wheelchair. In 2016, being 16 years old, I experienced an unbelievable trip, which was my great wish for my upcoming 17th birthday. My family and I decided to travel to Tenerife, one of the Canary Islands, so I could have the chance to participate in the STARMUS festival. It is a prestigious festival of Science and Art, where lots of famous natural and life scientists present the most important scientific findings of their careers. Among 11 Nobel laureates, I had the chance to listen to and experience in person a lecture given by Stephen Hawking, definitely being one of the highlights of the festival. Nevertheless, during the festival, my passion shifted from astronomy to molecular biology/genetics/biomedicine and neuroscience, attending also lectures by the famous life scientists and Nobel laureates Edvard Moser and Elizabeth Blackburn, who sparked my interest in biology. Now, being an undergraduate student of biology at the University of Vienna, I feel like I am arriving at a fork in the road of my life, trying to merge my interests in molecular biology and astronomy. I am very lucky, being supported in an incredible environment and having connected with amazing, important people who would like to accompany me on my way, noticing that their potential to influence my decisions is extraordinary – hopefully in a positive way. I am certain that my way has not yet ended and I am already very curious about what I will be honoured to experience in the future, pursuing my aim to merge my two major professional interests: astronomy and biomedicine. ![]() Blog also published at Kids2.space Anna Karahan European Space Foundation - ERC Coordinator & Inspiration Zone producer It’s 2077 We have been expanding our presence on Mars for several decades now, which involves trial missions, in-depth research, terrain checking, the first human landing on the surface of the Red Planet and the creation of a scientific base. Driven by curiosity and the desire to learn and expand the human possibilities of adapting to new living conditions, we decide to establish colonies on Mars. The inhabitants of the new Martian city-states are not accidental. They were selected based on their health, intellectual and psychological abilities as well as the skills they will contribute to building a new society, drawing on the lessons learned from the mistakes made on Earth... Warsaw, 4-6 March 2022 25 students, divided into interdisciplinary groups, begin working on the project of five Martian colonies. They include representatives of geology, law, architecture, design, and culture. Supported by mentors, they try to find answers to the following question: What location on Mars will be the most appropriate for their colony, considering the possibility of easy landing and take-off, access to a water source, as well as the scientific and soil-forming potential of the area? In terms of architecture and design, they must remember about the impact of temperature, sandstorms, harmful radiation, and meteorite strikes, but also make sure the colonies are self-sufficient and provide shelter for thousands of people. Also in the spotlight are such important questions as: How will our senses react on Mars? What do we, as humans, need to survive in an extreme environment? The Mars Colony Hackathon participants also discuss whether they want to transfer to Mars the current Earth culture as well as the economic and political status quo, or... on the contrary? Should they take the current trends in sustainability, climate change, inequality, diversity, and the impact of technology on people into account? What values, traditions and rituals will accompany them? Another sol of 2077 begins.
There are already five colonies on Mars: IGNIS, MARIS, MONADA, M.O.D. AND WEST COAST COLONY. They are all self-sufficient, but willingly cooperate with one another and with Earth in the exchange of goods, know-how as well as education and tourism. They all signed a non-aggression pact. Goods are transported by centrifugal force technology, and people move between colonies on sub-orbital rocket flights. In the close vicinity, inhabitants travel by rovers. We visit the IGNIS colony, located in the Athabasca Valley in the Elysium Planitia region. It arose from a research colony founded in the 2040s by the International Organisation whose inhabitants revolted and declared independence. The main IGNIS doctrine in international relations is not getting involved in the political affairs on Earth. Its inhabitants live in symbiosis with nature, and they base their sustainable development on science. They obtain water thanks from the nearby pingos, and their source of energy is a cosmic solar power plant in a geostationary orbit, sending energy in the form of high-frequency radio beams. The power plant has movable panels, which enable the plant to draw energy throughout the day and night. The inhabitants expect that at a later stage the development of the energy sector will be based on small modular reactors (SMR). The IGNIS system is a hybrid of the republic and direct democracy. Everything that is produced in the colony as well as all the tools and items that the inhabitants use belong to the republic and are used on a shared basis. We continue our journey to visit the MARIS colony, located in Valles Marineris.
As a result of human activities on Earth, the climate crisis deepened, natural resources were depleted, and biodiversity was disappearing. In the social field, we were affected by wars, social inequality, discrimination, and polarisation. The human condition was also deteriorating because of loneliness and civilisation diseases. The founders of MARIS wanted to change that, so they decided to create their Martian colony – a new community based on responsibility and integrity of human beings with the planet, community, and themselves. The local habitat is famous for its hydroponic crops and baths with saunas. The community cares about good mood and mental health of every citizen, which ensures the proper functioning of the entire colony. Therefore, apart from integration, a common dining room, kitchen, or medical, educational and laboratory space, it places great emphasis on providing the inhabitants with private space. As guests, we are invited to one of the capsule-rooms that function as bedrooms. We immediately experience thermal comfort and silence. We can also regulate the amount of light. The whole room is finished with a soft material and there is a pleasant smell in the air... Next sol we travel to the northernmost colony of MONADA, located between Mamers Valles and Deutronilus Mensae.
In some philosophical systems, a monad is a basic substance, on the one hand elemental, permeated with individuality, and on the other hand, rich in various types of capital. It gives almost unlimited development opportunities. The MONADA inhabitants treat their colony as an organism which, having a huge and varied potential, can not only develop independently, but also establish relationships with other entities in the world, which is a continuous collection of elementary substances. Its architectural solutions are also based on spherical units, which are self-sufficient and independent in a crisis, but for the sake of proper functioning of the society they connect with one another to form a network. Each unit has the necessary sectors located on different levels: industry, food production, public utilities, such as hospitals, schools, and religious places, as well as housing. Light runs through each sphere from above and cascades across the room. The radial layout of rooms and internal space can be modified by moving the walls. The colony has one of the largest deposits of magnesium-rich sulphur oxide and olivine as well as access to several rubble glaciers which constitute the source of water. MONADA sells its medicines, steel, solutions related to design and architecture, including modular furniture, “my personal sun” lamps, personalised “Martian wallpapers”, aromatic postcards from Mars as well as a patented circulation system and inter-colonial rover loading system both to the countries on Earth and the Martian colonies. The next stop on our Martian journey is M.O.D. (Martian allotments), located in Dao Vallis.
It is an international, democratic colony, still dependent on the Earth for the supply of certain raw materials and resources. It was built of modular segments created with a 3D printer and completely hidden under the surface of Martian regolith. The main element of the individual residential modules are internal allotments used for garden cultivation, experimenting, and relaxation. The colony focuses on simplicity and minimalism in limited Martian conditions, hence the white walls of the rooms and easy-to-modify segments. The virtual reality used in the colony, however, allows its inhabitants to create an environment that gives a sense of greater security, avatars, or everyday outfits to express themselves and their individual style. Special overalls worn by the inhabitants check their vital functions, hormone levels, and work-life balance simultaneously. M.O.D. conducts intensive research to increase recyclability and the best possible use of limited Martian resources as well as to develop production and plantations that provide the colony with food and vital products. The joint work of the M.O.D. inhabitants strengthen intergenerational ties, giving an opportunity for integration and talks. Each of the inhabitants undergoes compulsory training to be able to work in various sectors of the habitat if necessary. WEST COAST COLONY, located in the Olympus Mont region, is the last stop of our trip.
Separation of powers, peaceful space exploration, cognition and science, high level of education, cooperation between humans and artificial intelligence, transhumanism, and bionics – these are the bases of its functioning. The area chosen by the inhabitants for their colony is convenient not only in terms of living, but also for geological research. The magnesium- and iron-rich basalt rocks present here are a good raw material for construction and the production of soil fertilisers. The colony bases its economy and exports on them. The colony is highly automated. Robots are used in the transport of raw materials and products from/to factories, the production of modular elements for housing, cultivation, services, and even administration. The West Coast Colony inhabitants believe that as humans we have certain limitations, and we must constantly overcome our weaknesses. Therefore, they focus on transhumanism and gene improvement in such a way as to adapt the human body to the difficult Martian conditions. They also place great emphasis on inclusiveness, cultural and social life, common rituals as well as education and learning the truth about the universe. The colony also includes green zones for rest and recreation with plants brought from Earth... Warsaw, 6 March 2022 We are going back to Earth. There is a war going on across our eastern border and climate change brings us intense winds, rains, earthquakes, and volcanic eruptions... Some people question the sense of organising such design and humanist workshops or hackathons. But maybe travelling to Mars in our imagination will help us see and express what we do not like here on Earth, change the things that should be changed or even adopt a completely different approach to things we know? Is it not thanks to our dreams and imagination that we are able to look into the future and create the world we want to live in? Not only on Mars, but also here on our planet Earth... The Mars Colony Hackathon was organised by the US Embassy and the European Space Foundation in cooperation with the Polish Space Agency and Venture Café. The workshop took place on 4-6 March 2022 at the Cambridge Innovation Centre in Warsaw. Congratulations to the winning team members: MONADA – Julia Jeka, Karolina Kruszewska, Tomasz Leonik, Oliwia Mandrela and Kamil Serafin. *Blog also published on the European Space Foundation website This blog is promoted and supported by the:
Author: Chris YuanMember of the InnovaSpace Board of Advisors; CoFounder Planet Expedition Commander Academy (PECA), Explorers Club member, Space Dreamer... "Bang bang bang, bang bang," there was a knocking sound from the water. This is an 18-foot-deep pool in the diving hall of Nanning City Gymnasium in Guangxi. Two PECA (Planet Expedition Command Academy) trainees: Hannah and Selina, wearing scuba diving gear, are stitching together a satellite model underwater, which is designed with PVC pipes of different colours that are removable and can be spliced together. This training involves scuba divers simulating the role of space station EVA astronauts, capturing and repairing damaged satellites. The person under training must maintain neutral buoyancy during the whole process and retain sober analytical and hands-on ability under the conditions of maintaining air consumption, completing the assembly of the satellite model and bringing it out of the water. Hannah and Selina are mother and daughter, and Selina had just graduated from college and planned to have a gap year. The pair chose to participate in the 3-month PECA general training course. The scene just described was their training subject for PECA's second physical space, Ocean Planet: astronauts completing space missions in a simulated weightless state. They started from scratch and had already successfully completed the first physical space: Earth-Mountain Exploration, in which they completed a 10-day cross-country horseback trek on the Qinghai-Tibet Plateau, and finally entered Tibet on horseback, after completing 235 kilometres of horseback riding. Finally they arrived in Guangxi, China and experienced a lot of confined water training, cave diving, to adapt to the exploration of the underwater world, and simulate future space travel. Selina had no previous experience with such a wide range of different exploration types, and when asked if she worried about whether she would be up to the challenges of the training, she said: "I chose to take this step, that is, I chose to face the unknown changes." The PECA curriculum has been seeking a path that connects the ordinary person at one end, with at the other end the coming age of great sailing for civilian space exploration (see also previous blog). Space exploration in the minds of most people is a national strategy, a game for a few people financially supported by the government, and super-rich people. Several of my friends have asked me a similar question, a pointed question:
"How do you think that space travel can become a majority movement in the future? How is their training program different from official astronauts?" Allow me to start with a story. Fifteen years ago, I rode a mountain bike alone from the Ger-mud area of Qinghai to Lhasa, Tibet, and then continued on until I reached the base camp of Mount Everest. This is the highest road in the world. My journey lasted 40 days, was 2200km and ended at the highest altitude of the Everest Base Camp. I later wrote a book "Through Your Eyes, See My Soul - 40 Days of Everest Ride". Some readers asked me the same question: "What is the most important prerequisite for a beginner who will ride the Qinghai-Tibet line? Sufficient money or physical reserves?" After thinking carefully, I replied: Neither of the two you mentioned are the most important, the most important thing is the ambition you have to go, it's the determination, it's the emotion. With that first push, money and other things follow." Think about it, it took only 66 years from the Wright brothers first successful test flight of their plane to the landing of a man on the Moon! The Stellar Music project in summary - take musical notes generated mathematically from a star, arrange them into a beautiful tune, and then use your imagination to think of unique ways to illustrate the music. To discover how the music was created visit the blog: innovaspace.org/blog/stellar-music Music: - Star used = Delta Cephei, part of the constellation Cepheus - Music arrangement = Miko Mike Oliver Gimao Visuals: - AI-generated visuals = Elerias - Mermaids = Yanyue Lee; Jingfeng Liu; JingYi Lee; Surong Wang; Meijing Lee; & Xiao Qian Bai Enjoy the cosmic music 🌟🌟🌟 |
Welcometo the InnovaSpace Knowledge Station Categories
All
|