InnovaSpace
  • Home
  • Mission
  • Team
    • Board of Advisors
    • Global Partners & Friends
  • What We Do
    • Space4Women
  • Regional Hubs
    • Hub Português
    • Hub Español
  • Events
  • Blog
  • Resources
    • Library
    • Analog missions
    • Podcasts, Media & Websites
    • Scholarships & Grants
    • Societies & Organisations
  • Contact
  • Home
  • Mission
  • Team
    • Board of Advisors
    • Global Partners & Friends
  • What We Do
    • Space4Women
  • Regional Hubs
    • Hub Português
    • Hub Español
  • Events
  • Blog
  • Resources
    • Library
    • Analog missions
    • Podcasts, Media & Websites
    • Scholarships & Grants
    • Societies & Organisations
  • Contact
Search

BLOGS VLOGS & VIEWS

DEBRIS BUG: My space debris clean-up beetle!

5/8/2020

 
Picture

Author: ​Warisa Jaidee

Space and astronomy enthusiast, and Kids2.space Contributor from Thailand

My name is Warisa Jaidee-Isee. I am 18 years old and currently studying at UWC Atlantic College, in Wales, UK. I would like to share with you my passion and dreams to explore the Universe.  When I was 15, I attended the “APSCO Youth Space Contest”, organised by the Asia-Pacific Space Cooperation Organization (APSCO). I had a chance to share my idea about space science with my friends from the ASPCO member states in Beijing, China during 15-21 July 2017. Here is my idea under the theme “Future Space Homeland”.

To be able to live in space, there’s one important thing that people tend to overlook - the problem of space debris. We already know that when we invent a spacecraft and send it up into Earth’s orbit, it will one day no longer be of use and it will become space debris, drifting around in orbit or entering the vast outer space. These debris are dangerous because they could collide with new spacecraft sent up there. At the end of the day, the more space debris, the less resources we have on Earth. Therefore, if the future homelands of humanity are, supposedly, the new planets, we should consider clearing the space debris out of space for our own safety. My space debris clean-up beetle: “Debris bug” would be needed to set up a new space home.
Picture
Applying the technology
“Debris bug” is able to communicate with and accept instruction through radio waves. When it finds garbage in space, the "beetle" releases a magnetic network to capture it. It will then bring back the space debris to the base for recycling and reuse.
Picture
Picture
Picture of my Idea Sketch
​My main concept is the word “PRECYCLE” from pre and recycle. Pre-cycle is to re-design the spacecraft into a module that could be detached in a certain pattern with a tracking microchip that can be easily collected
Purpose of the design and function are as follows:
- To reuse the unused space debris.
- To recycle the space debris into new use.
- To clear the orbital path and make the space ready for human beings to go and live there in the future.
Picture
Picture
PICTURE OF MY MODEL: I built my model out of recycled materials, such as milk bottle and cap, juice carton and scrap paper.
My design consists of 2 main modules, which are the Mother ship and Crew ships, called Debris Bugs. The Mother ship will contain the small ships called “Debris Bugs”. In space, the Mother ship will release the Debris Bugs and let them drift away to search for the space debris by using their censors. The debris bugs will grab the chunk of space debris by their clawed legs and take control of the velocity. They will then load them in, taking them back to the Mother ship. When encountering small and scattered debris, they will grab those by releasing their magnetic nets to wrap around the junk. The debris bugs will then drag them back to the Mother ship, after which the Mother ship will return to the base. The Mother ship and Debris Bugs are controlled from the base and can also communicate by using radio waves to send signals to the antennas. The antennas will capture those signals and process the information coming from them.

It was a great time and fun activity to attend a platform of cultural exchange and idea collision with friends that have the same interests in the Universe. It also inspired and motivated me to look further into space science and technology. I wish to attend more space activities in the future.
You can find more youth activities in space science and aerospace industry from http://www.apsco.int/html/comp1/content/NewGenerationCultivating/2018-07-05/66-178-1.shtml​

The Road to Aerospace Medicine

5/8/2020

 

Author: Thaynara Vicente B Kurrle

Successful International Baccalaureate Diploma candidate; Ketedralskolan, Linköping, Sweden & now studying medicine

Picture
For as long as I can remember, I have always been flying around. My mother was a flight attendant, my father was an Air Force mechanic and we spent most of our lives living in an Air Force base. To board, deplane and wake up with the noise of helicopters and jets was part of the routine, which did not make it less special to me.
​
When I was 17 years-old, my family was transferred to Sweden and I had to decide what I wanted to do with my life. I was only sure about 2 things: I wanted to help and serve people, and I loved airplanes and the life in the air. How was I supposed to combine these two? I had no idea. Most people did not see a link between these two points, but I knew that I had to find a way, otherwise, I would never feel complete. If I would imagine myself permanently away from jets and airports or not in direct contact with people in need, a huge void would open in my chest; it just was not right, “either, or” was not an option to me.

In a Spring afternoon of 2018, I overheard some fighter pilots telling stories about accidents they had witnessed: a smashed jaw during the ejection after a period of temporal distortion, tunnelled vision, and a total blackout during the centrifuge training. Then, it hit me, those people were the link, they were the ones who connected those amazing machines to the human factor, they were the ones I wanted to help.

I started to research, and I still remember the first words that caught my eyes: “flight-surgeon”, “AsMA”, “Aerospace Medicine”. Upon reading the last mentioned, my heart dropped. I had found it. I had found an entire field and community of people as curious as me and that shared the same passions. And at the end of that year I was given the chance to get in touch with it more directly.

To graduate the International Baccalaureate (a different kind of high school), every student must carry out an independent research about a topic they would be interested in studying in university, our first research paper. I knew exactly what I wanted to do, I wanted to understand the symptoms and episodes I had heard about countless times, I wanted to understand what that so feared G. was. I read all the books about aerospace medicine fundamentals and flight physiology I could find, I started to talk to every single crew member and engineer I could reach, but the understanding of the symptoms through medical lenses was still missing. Another important thing that was missing was a supervisor, who would be willing to help me to start the research. Basically, the Science Department of my school did not understand what I was going for, how I was going to do it and no teacher was exactly thrilled with the idea of supervising a student they had no idea of how to help. It was even hard to decide whether to classify it as a Biology or Physics project!

​It was in the spring of 2019 that Maria, who was not even my teacher, heard about the project and was willing to supervise me, but I would have to find help from doctors outside; as she put it “You have chosen a very, very specific topic, so you need a very specific knowledge because I can’t tell you how to start”. And here we go again on another quest for a supervisor. And this quest is what made me fall completely in love with the scientific community.

​
Doctors who had never met me sent me PDFs and articles and two of them (thank you so much, Dr Suto and Dr Lia) sent me the contact of Dr Thais Russomano, who was the fairy godmother of my Extended Essay. She taught me how to structure and organise a research based on the study of the literature, how to select it, how to understand the state of the art of that field. It was more challenging than I was expecting but it made all the difference. Thanks to all her feedbacks and articles I was finally able to understand where I was and how far I would be able to go (unfortunately not as far as I wanted due to school limitations). But now I knew what I was doing. I wanted to understand the effects of the G-acceleration on the human cardiac system and how the Anti-G Straining Manoeuvre diminished its effects. All I needed for the school to approve it was: at least 7 volunteer pilots with enough availability to measure their blood pressure while doing loops 2 or 3 times for a random girl’s school project, piece of cake right?
Picture
Dynamic Flight Simulator at the Flight Physiological Centre in Linköping, Sweden
Picture
Captain Fórneas after qualification in the Dynamic Flight Simulator
To my heart-stopping surprise I got all of them, and they were all mostly glad to help me and to send me papers, videos, and pictures from their own centrifuge trainings (thank you so much Major Forneas and Colonel Leite). Nevertheless, to my despair the data collected contradicted my primary hypothesis! Great!

That is when my dear friend Jonas comes into scene. He worked at SAAB, the company which was developing the new Brazilian Grippen, state-of-the-art fighter jet, and offered to arrange me an interview with a test-pilot. It was by far, one of the greatest days of my life!

While we were waiting for Andreas to finish his debriefing, Jonas took me on a tour around the Flight Test Centre. I had always wanted to see the Grippen; only one was ready so far, it had flown only once and only authorised personal could see or get close to it, or at least I had been told. Jonas opened the hangar’s door and there it was! The mysterious Grippen and I was one of the few civils, who had nothing to do with the project whatsoever, who had been able not only to see it but to climb up to its cockpit! Right there, I knew I had made the right choice.
​
Andreas, the test-pilot, still wearing his anti-G suit, spent a long time answering my endless questions, and by the time I finished the interview I understood where I had gone wrong and the kind of data that I needed to prove my new hypothesis right! And again, I was mesmerised by how the scientific community mobilised itself to help an enthusiast like me, who was still not even part of it.
Picture
Touring the Flight Test Centre

INTERNET, EXERCÍCIO FÍSICO E DEPRESSÃO: QUAL A RELAÇÃO DURANTE A PANDEMIA DE COVID19?

1/8/2020

 
Picture

Autores: Beatriz Helena Ramos Reis*, Bruno Veiga Fontes de Carvalho*, Prof Jonas Lírio Gurgel**, Prof Flávia Porto*

*Instituto de Educação Física e Desportos, Universidade do Estado do Rio de Janeiro (UERJ)
**Instituto de Educação Física, Universidade Federal Fluminense (UFF)

Picture
Beatriz Helena Ramos Reis
Picture
Bruno Veiga Fontes de Carvalho
Picture
Prof Jonas Lírio Gurgel
Picture
Prof Flávia Porto
Picture
A pandemia de COVID-19 gerou a necessidade de utilizar medidas de distanciamento social para que haja a redução da disseminação do novo coronavírus. Contudo, têm-se percebido prejuízos na saúde física e mental dos indivíduos, porque a mudança brusca na rotina resultou em um novo estilo de vida das pessoas, que passaram a viver em confinamento. Aumento de preocupações, ansiedade, tristeza prolongada e sedentarismo são algumas das consequências ocasionadas ou agravadas pelo isolamento.
​

Como forma de minorar esses efeitos, o exercício físico continua sendo reconhecido como uma estratégia não-medicamentosa eficaz que auxilia na prevenção e no tratamento de doenças físicas, metabólicas e/ou psicológicas. Entretanto, a suspensão e a limitação do uso de estabelecimentos, como academias de ginástica e clubes esportivos, para evitar aglomeração, levaram muitas pessoas a praticar atividades físicas regulares em casa.

Nesse contexto, percebeu-se um fenômeno interessante na internet, que foi o aumento da busca por informações online. O Google Trends, por exemplo, é um recurso que expõe os termos mais pesquisados em diferentes lugares do mundo e revela sua popularidade em uma escala de 0 a 100. Nele, foi possível identificar o aumento da busca por informações relacionadas às consequências e necessidades geradas pela pandemia. Nesse contexto, vimos que, no Brasil, as buscas pelo termo “exercício físico em casa”, em Português, antes de março de 2020, teve popularidade baixa (oscilando na escala entre 0% e 25% de procura via Google). Após esse mês, quando se iniciou o distanciamento social no país, a busca pelo termo oscilou, aproximadamente, entre 40% e 100% até o momento atual. Ao analisar o termo “physical exercise at home”, em Inglês, notou-se que, em janeiro de 2020, as buscas estavam entre 0% e 25%. De fevereiro até maio deste ano, as buscas estiveram entre 25% e 100%, diminuindo em junho, momento em que vários países afrouxaram as regras de isolamento. Ao observar esses dados, notamos um aumento considerável na popularidade dos termos durante esse período, demonstrando um maior interesse de internautas sobre o assunto. Essas oscilações parecem ter relação com o fechamento e abertura de comércio e demais atividades no mundo.
Picture
Interessante também mencionar a necessidade de adaptar os exercícios a ser realizados em casa. Dessa forma, percebeu-se que o interesse por equipamentos esportivos para realizar exercícios físicos em casa também aumentou, sendo demonstrado nas buscas no Google.  A pesquisa pelo termo “equipamentos para atividade física”, nos dois primeiros meses desse ano, estava próxima a zero em níveis de interesse; já em março, o interesse aumentou bastante, chegando a atingir 100 no mês de abril. Em todo mundo, o termo “equipment for physical activity”, pesquisado na língua inglesa, mostrou pico de interesse (100 na escala) no mês de fevereiro e menor interesse próximo ao início de junho (0 na escala). Como a pandemia ainda não está controlada, inclusive com previsão de novas ondas de contágios e mortes, é bem provável que os hábitos das pessoas mudem, realmente, como forma de adaptação à nova realidade.

Apesar da reconhecida resiliência das pessoas, não se pode negar que os prejuízos psicológicos são evidentes e, muitas vezes, é até difícil entender esses sentimentos e lidar com a magnitude que podem atingir. Pensando nisso, repetimos o processo de investigação no Google Trends e verificamos que o termo “depressão na quarentena” não apresentava interesse da população Brasileira entre janeiro e início de março (0 na escala) – esse desinteresse deve-se, provavelmente, ao fato de que ainda não existia o confinamento social no Brasil. Porém, a partir de março, a busca pelo termo cresceu muito, atingindo o pico de pesquisa (100 na escala) no início do mês de maio. Quando pesquisado, em Inglês, o termo “quarentine depression” também não houve interesse pela população mundial entre os meses de janeiro até o início de março. A partir daí, iniciou-se um aumento exponencial pela procura do termo, atingindo seu pico no mês de abril e, após, uma sequente diminuição até o mês de junho.

Do espaço ao COVID-19: o que podemos aprender? Astronautas devem saber lidar com o confinamento e, apesar de serem submetidos a diversos tipos de treinamento para cumprir de forma adequada as missões espaciais, efeitos psicológicos provocados pelo confinamento são relatados na literatura. No caso da COVID-19, não houve preparo para essa nova realidade. Estamos todos tentando desenvolver mecanismos para desenvolver resiliência e melhor lidarmos com a pandemia e todos os acontecimentos relacionados à ela. A internet torna-se uma aliada, uma companhia provedora de informações e possibilidades de compras para as pessoas. O desafio agora é lidar com essa quantidade de informações, separando-as em relação à veracidade e à aplicabilidade.
Picture

THE INTERNET, PHYSICAL EXERCISE AND DEPRESSION: WHAT IS THE RELATIONSHIP DURING THE COVID-19 PANDEMIC?

1/8/2020

 
Picture

Authors: Beatriz Helena Ramos Reis*, Bruno Veiga Fontes de Carvalho*, Prof Jonas Lírio Gurgel**, Prof Flávia Porto*

*Institute of Physical Education and Sports, State University of Rio de Janeiro (UERJ)
**Institute of Physical Education, Fluminense Federal University (UFF)

Picture
Beatriz Helena Ramos Reis
Picture
Bruno Veiga Fontes de Carvalho
Picture
Prof Jonas Lírio Gurgel
Picture
Prof Flávia Porto
Picture
The COVID-19 pandemic has generated the need to employ social distancing measures to reduce the spread of the new coronavirus. However, negative effects on the physical and mental health of individuals have been noted, as the sudden change in routine has resulted in a new lifestyle for people, who are now spending their lives in confinement. Increased worries, anxiety, prolonged sadness and inactivity are some of the consequences caused or aggravated by isolation.
​
Physical exercise continues to be recognised as an effective non-medication strategy that is useful for mitigating these effects, as it helps in the prevention and treatment of physical, metabolic and/or psychological diseases. However, measures taken to suspend and limit the use of establishments, such as gyms and sports clubs, to avoid people gathering together, have led to many people undertaking regular physical activities within the home.

In this context, an interesting phenomenon has been seen on the internet, which is an increase in the search for information online. Google Trends, for example, is a resource reporting the most searched terms in different locations of the world and reveals the popularity of these terms on a scale of 0 to 100. It was possible from this to identify an increased search for information related to the consequences of the pandemic and the needs it has generated. It can be seen that in Brazil, prior to March 2020, searches for the term in Portuguese “exercício físico em casa” had low popularity (fluctuating between 0% and 25% on the scale of Google searches). The following month, after the beginning of social distancing within the country, the search for this term has varied between approximately 40% and 100% until the present day. When analysing the same term in English, it was seen that interest in this search varied between 0% and 25% in January 2020, whereas, from February until May of this year, searches rose to between 25% and 100%, before decreasing in June after several countries had relaxed their isolation rules. Analysis of this data evidenced a considerable increase in the popularity of the term during this period, demonstrating a greater interest in the subject by Internet users. These variations seem to be linked to the closing and opening of trade and other activities around the world.
Picture
It is also interesting to mention the need to adapt to performing exercise at home. Consequently, it was noticed that interest in the sports equipment needed to practice physical exercise at home also increased, being demonstrated by searches on Google. The search for the term in Portuguese "equipamentos para atividade física" in the first two months of 2020 was close to zero in interest levels; by March interest had increased a lot, reaching 100 in April. From a global perspective, the term “equipment for physical activity”, researched in the English language showed a peak of interest (100 on the scale) in February and less interest by the beginning of June (0 on the scale). As the pandemic is not yet under control, and indeed with the prediction of new waves of contagions and deaths, it is very likely that people's habits will really change as a way of adapting to the new reality.

While recognising that people are in general resilient, it cannot be denied that psychological damage is evident, and it is often even difficult to understand and deal with the magnitude of the feelings that may arise. With this in mind, we repeated the research process on Google Trends with the term in Portuguese “depressão na quarentena”, and found little interest from the Brazilian population between January and early March (0 on the scale), probably due to the fact that social confinement did not exist in Brazil at that time. However, from March onwards, the search for the term grew a lot, reaching a peak in searches (100 on the scale) by the beginning of May. Similarly, when researching the term “quarantine depression” in English, there was little interest in the world population between the months of January until early March, with a subsequent exponential increase in searches for the term, reaching a peak in April, followed by a decrease until the month of June.

From Space to COVID-19: what can we learn? Astronauts need to know how to deal with confinement and, despite being submitted to various forms of training to adequately meet the challenges of space missions, psychological effects caused by confinement have already been reported in the literature. In the case of COVID-19, there was no preparation for this new reality, leaving us all trying to develop mechanisms to become more resilient to and cope better with the pandemic and all the events related to it. The Internet has become an ally, a service that provides information and shopping possibilities for people. The challenge now is to deal well with this volume of information, dividing it up in terms of what is true and what is applicable.
Picture

Y que son las Misiones Espaciales Análogas????

28/7/2020

 

Author: María Alejandra Corzo Zamora M.D, MSc

Space Physiology & Analogue Space Missions Lead - InnovaSpace Spanish Hub

Misiones Espaciales Análogas.., término que a primera vista para algunos es extraño, para otros es una gran oportunidad de ciencia. La primera vez que vi este término fue durante mi maestría en Fisiología y Salud Espacial en King’s College London, en la cual diferentes docentes y estudios los tenían como referencia para investigación en ciencias espaciales y desde ese momento me enamoré de este campo.

Pero que son las Misiones Espaciales Análogas??
​
Bueno, estas misiones son operaciones espaciales realizadas en la Tierra en escenarios naturales o artificiales adecuados para simular entornos o escenarios espaciales, los cuales se realizan para realizar pruebas de equipos, estandarizar procedimientos de tripulaciones espaciales y también permiten desarrollar estudios en diversas áreas del conocimiento como son la Biología, medicina, ingeniería biomédica, robótica, comunicaciones, y otros tipos de ingeniería entre otras.
El planeamiento de una misión espacial requiere de diferentes componentes que deben ser milimétricamente estandarizados en tierra para lograr el éxito de la misión en el espacio, en este campo, las misiones espaciales análogas juegan un papel importante en la estandarización y entrenamiento de las personas involucradas en la misma. 
​
Las misiones espaciales análogas datan desde la planeación de las misiones Apolo de NASA en la cual, cráteres de meteoritos y faldas de volcanes fueron utilizados para las pruebas de trajes espaciales y rovers que participaron en la misión; así como los astronautas seleccionados recibieron su entrenamiento en comunicaciones, procedimientos para recolección de muestras geológicas, supervivencia, adaptación a sistemas de emergencia de vehículos y su operación.
Picture
Astronautas del Apollo 11 Edwin (Buzz) Aldrin (izquierda) and Neil A. Armstrong, en entrenamiento de procedimiento para la recolección de muestras geológicas en la Luna para el primer aterrizaje Lunar en las Montañas de Quitman en Texas. En esta mission utilizaron herramientas especialmente diseñadas para la mission. (NASA). Imagen tomada de Smithsonian Magazine en: https://www.smithsonianmag.com/travel/going-moon-apollo-11-astronauts-trained-these-five-sites-180972452/
Desde entonces, estas misiones son de vital importancia para los programas espaciales y para todas aquellas organizaciones, instituciones, universidades entre otros que desean realizar investigación y desarrollo en ciencias espaciales.

Entre las aplicaciones más utilizadas encontramos el estudio de los factores humanos en el espacio, los cuales se relacionan con respuestas comportamentales y fisiológicas al confinamiento, la interacción entre comunicaciones de la tripulación con el centro de mando remoto y el desarrollo de aplicaciones a distancia para el apoyo de la tripulación y manejo de emergencias. 
​
Entre los escenarios naturales utilizados para estas misiones son los desiertos, los cuales poseen características únicas como acceso, cambios extremos de temperatura día y noche, vientos y su gran similitud con las imágenes topográficas de Marte, ejemplo de su uso se encuentra la estación del desierto de UTAH por el Mars Society y misiones temporales realizadas por el Foro Austriaco Espacial en  desierto de Rio tinto en España, norte del Sahara en Marruecos y la región de Dophar en Oman. En Latinoamérica se han realizado misiones en el desierto de Atacama en Chile, en el desierto de la Tatacoa en Colombia entre otros desiertos.
Picture
Astronautas análogos en Desierto de Oman, en la misión Amadee 18 del Foro Austriaco Espacial. Créditos: OeWF (Florian Voggeneder). Tomado de: https://oewf.org/en/portfolio/amadee-18/
Picture
Prueba del Rover Rosalind Franklin en el desierto de Atacama en Chile, el cual es controlado desde el Reino Unido. Créditos: Airbus. Tomado de: https://www.lpi.usra.edu/publications/newsletters/lpib/new/esas-mars-rover-name-rosalind-franklin/
​De igual manera, la Antártida, al ser un continente poco poblado y de difícil acceso se convierte en otro escenario muy atractivo para el desarrollo de misiones análogas espaciales, es así como una estación permanente en la cual se ha desarrollado diferentes aplicaciones espaciales y estudios biomédicos es la estación Concordia operada por Italia y Francia.
Picture
Estación Antártica Concordia. Tomado de https://cnnespanol.cnn.com/2015/12/09/preparandonos-para-marte-viviendo-en-la-antartida/
El mundo de las misiones espaciales análogas es muy amplio y fascinante, así como el mismo espacio, otros escenarios incluyen cuevas, selvas, faldas de volcanes y el fondo del océano, hasta escenarios en hangares en la ciudad, los cuales proveen similitudes con el espacio dependiendo del objetivo que se busque en cada misión.

Si eres amante de estas ciencias, te invito a seguir los blogs en InnovaSpace, donde encontrarás otros datos sobre misiones espaciales análogas y otros temas de las ciencias espaciales.
​
Nos vemos próximamente!!!!

Magnificent Desolation

24/7/2020

 
PictureConcordia Research Station, Antarctica
Ever fancied spending some time in Antarctica? If so, take a look through the writings of Dr Stijn Thoolen, an ESA-sponsored medical doctor spending 12 months at the Concordia research station. His photos will either inspire you to go do it, or remind you of how desolate and EXTREMELY cold it is! Do take a look at Part 1, Part 2, and Part 3 of his blog series, talking about his time at the world's southernmost continent. ​

Dr Stijn Thoolen

Medical Research Doctor, Concordia Research Station, Antarctica

Concordia, January 2, 2020
Sunlight: 24 hours
Windchill temperature: -25 °C
State of mind: all good
 
It’s quite a happy happening today, so let’s put on something fun. Feel free to put it on repeat.
It is a beautiful summer day. There is even less wind than usual (with constant summer temperatures, almost always a blue sky and few weather changes, we are mainly concerned with wind), so I am not afraid to go outside in my t-shirt today. The sun reflecting off the snow is attacking me from all directions, and I will most probably burn, but I don’t care. It may be my only chance this year (and I imagine that in a few months I will look back on this day just like you must now look back at those days at the beach, or under the green trees, in the warm sun…).

It is busy in front of the station. To the left, an empty rack is being carried away, to the right boxes are sorted, behind me a human chain is carrying them away into a container, and in front of me the green “Merlot” hoists the heaviest stuff. The chaos has something of a busy market on the village square (but then just a little different). Everyone is helping to organize those few 1000 kilos of food brought in by the overland traverse. It had arrived here yesterday, finally, after a day or ten on the ice. Huge logistics. You could say that all that food has arrived just in time, after that monstrous New Year’s Eve dinner two days ago (never seen so much food, not enjoyable anymore). But now that I see with my own eyes what is being stored in those containers and in the station, I am confident we won’t starve this winter.​
Picture
Fuel, food, material, and most importantly: my personal 110 kilos of fun. In the summer period, the traverse travels up and down several times from the coast to Concordia, over the ice cap, to supply the station, and so that we can start our winter with peace of mind.
Picture
The traverse seen by the French Pleiades satellite at an altitude of 700 kilometers. It looks pretty fragile to me. Credits: CNES
Summer feels like one big party. I have installed myself in the ESA lab by now, as well as within our DC16 crew, who are all still happy to participate in the biomedical research projects (the ESA lab is also a party). Every few days another plane comes in to deliver a new load of guests or equipment, and pick up old ones. Nobody lives here permanently (although some are almost considered part of the furniture after too many summer campaigns). We are all guests, and we are all working towards one common goal: knowledge.
Picture
Greetings from DC16 in summer spirits.. Credits: IPEV / PNRA - S. Guesnier.
Picture
Finally I am installed in the ESA lab. Now that the HOMAIR project also covers for the Dutch, there is no need to worry anymore.
There are currently around 70 people here at Concordia, a beautiful collection of the most diverse backgrounds but with that same goal, and all of us equally idiot to think that Antarctica is interesting enough to leave the comfort of home for. Seismologists, carpenters, glaciologists, climatologists, electricians, mechanics, meteorologists, astronomers, plumbers, physicists, physicians, cooks, ICT specialists, a cleaner, and a station leader. It makes for a lively experience and ensures that there is plenty to discover besides writing blog posts.
Picture
Concordia from above. Laboratories and scientific instruments are dotted around the base outside. Credits: CNES

Read More

The behaviour of light...

20/7/2020

 

Mary Upritchard

Co-Founder, Admin Director, InnovaSpace

In 1666, while self-isolating at his manor house in Woolsthorpe, Lincolnshire due to the Great Plague, Sir Isaac Newton proved, using a prism, that white light was actually formed of a composition of different colours. 
Picture
Source: Wikipedia
Centuries later, Barry Ressler (Founder, President & CEO of Star Associates Inc. & CEO of ISMC Inc.) was running a series of Monochromatic UV germicidal experiments when, by chance, he also created some fascinating colourful images. He placed a data DVD near a window covered by a shade during the exposures for the experiment he was conducting. On the top of the DVD, Ressler placed a prism and a quartz spacer. When the shade was opened, the angle of the rays of the sun onto the DVD surface reflected through the prism and quartz onto a wall, resulting in the astonishing creation of Image 1.
PictureIMAGE 1 - courtesy of Barry Ressler
When light moves from one medium to another, some rays reflect or bounce back within an object made of glass or a quartz-like material. This was clearly demonstrated by his experiment, which showed the behaviour of light as the rays bounced around the room to reveal the proper wavelength of different colours of light in the visible light spectrum.
​
​Ressler captured the beauty of these interesting images using a digital 16MP Hasselblad "V" system with 50mm lens. The pictures also showed another interesting property of the quartz, as it can make one side of the object look like a mirror. 

PictureImage 2 - courtesy of Barry Ressler
This is seen in Image 2, in which the red at the top of the quartz appears because of this mirror effect, reflecting the red from the base off the top of the quartz, while also refracting or bending the light to create the curved shape that can be seen.

​And Image 3 is such a thing of beauty, where you can almost pick out all of the colours of the visible spectrum of light, which have been memorised in the correct order by school children of many generations, using the well-known mnemonic – ROYGBIV – for example, richard-of-york-gave-battle-in-vain, signifying the colours in order: red, orange, yellow, green, blue, indigo, violet.

Picture
Image 3 - courtesy of Barry Ressler
Barry Ressler confessed though that the images happened completely by chance, as he placed the prism and quartz spacer inadvertently on top of the data DVD. ​
PictureThe first medical x-ray, the hand of Roenrgen's wife Anna Bertha Ludwig,
A fortunate case of serendipity that led to some stunning photos, and a not uncommon happening in the world of invention and discovery, whereby a little ‘luck’ or an ‘accident’ has led to an addition to the scientific knowledge. Just imagine if Dr Wilhelm Roentgen, Professor of Physics in Wurzburg, Bavaria, had not ‘accidently’ discovered X-rays while testing whether cathode rays could pass through glass! The first X-ray image ever was of his wife's hand, complete with ring, and his invention led him to become the first ever winner of the Nobel Prize in Physics in 1901.

The three prism and light images used in this blog, with the kind permission of Barry Ressler, first appeared and remain to this day on the American Physical Society Site - Physics Central, where the photos have met with a good deal of interest.


FROM FLOATING GUTS TO ‘STICKY’ BLOOD – HERE’S HOW TO DO SURGERY IN SPACE

9/7/2020

 

Author: Nina Louise Purvis

Medical student, Queen Mary University of London; Postgraduate Researcher, King’s College London 

It has been estimated that there will be one surgical emergency every 2.4 years on a mission to Mars. T. Trapp/BJS Surgery, CC BY-SA

Earlier this year, it was reported that an astronaut in space had developed a potentially life-threatening blood clot in the neck. This was successfully treated with medication by doctors on Earth, avoiding surgery. But given that space agencies and private spaceflight companies have committed to landing humans on Mars in the coming decades, we may not be so lucky next time.

Surgical emergencies are in fact one of the main challenges when it comes to human space travel. But over the last few years, space medicine researchers have come up with a number of ideas that could help, from surgical robots to 3D printers.

Mars is a whopping 54.6 million kilometres (33.9 million miles) away from Earth, when closest. In comparison, the International Space Agency (ISS) orbits just 400 kilometres above Earth. For surgical emergencies on the ISS, the procedure is to stabilise the patient and transport them back to Earth, aided by telecommunication in real time. This won’t work on Mars missions, where evacuation would take months or years, and there may be a latency in communications of over twenty minutes.

As well as distance, the extreme environment faced during transit to and on Mars includes microgravity, high radiation levels and an enclosed pressurised cabin or suit. This is tough on astronauts’ bodies and takes time getting used to.

We already know that space travel changes astronauts’ cells, blood pressure regulation and heart performance. It also affects the body’s fluid distribution and weakens its bones and muscles. Space travellers may also more easily develop infections. So in terms of fitness for surgery, an injured or unwell astronaut will be already at a physiological disadvantage.

Astronaut Chris Hadfield using a cardio lab at the ISS. NASA

But how likely is it that an astronaut will actually need surgery? For a crew of seven people, researchers estimate that there will be an average of one surgical emergency every 2.4 years during a Mars mission. The main causes include injury, appendicitis, gallbladder inflammation or cancer. Astronauts are screened extensively when they are selected, but surgical emergencies can occur in healthy people and may be exacerbated in the extreme environment of space.

Floating intestines

Surgery in microgravity is possible and has already been been carried out, albeit not on humans yet. For example, astronauts have managed to repair rat tails and perform laparoscopy – a minimally invasive surgical procedure used to examine and repair the organs inside the abdomen – on animals, while in microgravity.

These surgeries have led to new innovations and improvements such as magnetising surgical tools so they stick to the table, and restraining the “surgeonaut” too.

One problem was that, during open surgery, the intestines would float around, obscuring view of the surgical field. To deal with this, space travellers should opt for minimally invasive surgical techniques, such as keyhole surgery, ideally occurring within patients’ internal cavities through small incisions using a camera and instruments.

A laparoscopy was recently carried out on fake abdomens during a parabolic “zero gravity” flight, with surgeons successfully stemming traumatic bleeding. But they warned that it would be psychologically hard to carry out such a procedure on a crew mate.

Bodily fluids will also behave differently in space and on Mars. The blood in our veins may stick to instruments because of surface tension. Floating droplets may also form streams that could restrict the surgeon’s view, which is not ideal. The circulating air of an enclosed cabin may also be an infection risk. Surgical bubbles and blood-repelling surgical tools could be the solution.

Researchers have already developed and tested various surgical enclosures in microgravity environments. For example, NASA evaluated a closed system comprising a surgical clear plastic overhead canopy with arm ports, aiming to prevent contamination.

When orbiting or settled on Mars, however, we would ideally need a hypothetical “traumapod”, with radiation shielding, surgical robots, advanced life support and restraints. This would be a dedicated module with filtered air supply and a computer to aid in diagnosis and treatment.

Robots and 3D printing

The surgeries carried out in space so far have revealed that a large amount of support equipment is essential. This is a luxury the crew may not have on a virgin voyage to Mars. You cannot take much equipment on a rocket. It has therefore been suggested that a 3D printer could use materials from Mars itself to develop surgical tools.

Tools that have been 3D printed have been successfully tested by crew with no prior surgical experience, performing a task similar to surgery simply by cutting and suturing materials (rather than a body). There was no substantial difference in time to completion with 3D printed instruments such as towel clamps, scalpel handles and toothed forceps.

A Mars settlement would need a traumapod. NASA

Robotic surgery is another option that has been used routinely on Earth, and tested for planetary excursions. During NEEMO 7, a series of missions in the underwater habitat Aquarius in Florida Keys by NASA, surgery by a robot controlled from another lab was successfully used to remove a fake gallbladder and kidney stone from a fake body. However, the lag in communications in space will make remote control a problem. Ideally, surgical robots would need to be autonomous.

There is a wealth of research and preparation for the possible event of a surgical emergency during a Mars mission, but there are many unknowns, especially when it comes to diagnostics and anaesthesia. Ultimately, prevention is better than surgery. So selecting healthy crew and developing the engineering solutions needed to protect them will be crucial. The Conversation

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Defying gravity...

19/6/2020

 
Picture

Helena, 13 years old

From the International School of Indiana, IN, USA

Hello, my name is Helena. In my free time, I enjoy practicing aerial silks. Now, you might ask, “why would you consider this defying gravity?” Well, gravity is almost always used when doing silks. When you do drops, you are using gravity in every way. But there are some cases where you wrap yourself in something I call a friction wrap. This is where you wrap yourself in a way where most people think you would just fall. No knots and nothing exactly holding you. But in real life, you are creating so much friction on the fabric that it almost gives up. There are so many places that there is such a massive amount of friction that it can hold your entire body weight up. This sounds and feels almost like you are defying gravity.
Take a “hip key” for example. In this wrap, you are essentially just wrapping yourself for the fabric to go in then out of your thighs while you hold yourself up on the fabric using your grip. When you simply look at the wrap, it looks like you just have a fabric going behind your first leg, then through your legs, then on top of your second leg, but in reality, the friction that is being put on the fabric when it goes around your leg makes you not move and it feels like you are sitting down sideways. There are a lot of more intricate wraps and even drops that rely solely upon the friction created on the fabric when you do these wraps correctly. There is even a drop called the waterfall drop where you have zero knots or anything to hold you. In this drop, you fall forward simply relying on the fact that you wrapped each fabric three times around each leg.
Picture
Photo of Amy LaVan, taken during a vaudeville theatre performance, early 1900’s. Perhaps the first recorded aerial silks performer?
Now, although it might sound like it, the aerial silks don’t rely fully on friction and gravity to help you. A lot of it is also strength and grip. To get into many of these wraps, you have to hold yourself up and even do movements by holding yourself by gripping onto the fabrics and staying there for several seconds. For example, for the “hip key”, you have to hang on the fabric using the grip of your hands and do a windmill movement with your legs to be able to get into it. When you are learning these movements, you are essentially hanging on to the silks for dear life hoping you can finish the leg movements and wraps before your grip gives out and you fall to the floor. Obviously, when you get the hang of the aerial silks, you have a very good grip from doing so many exercises to engage your grip. This is a way gravity works against you.

In conclusion, I hope that after reading some of my explanations and watching my video, you have a greater understanding and respect for the ways that gravity can work against you, but it can also be a great help when you use it correctly in the aerial silks. I hope this inspires more amazement in the art of aerial silks and other forms of circus arts and performing, and shows how complicated and precise that the aerial silks are, and the performers have to be while performing it!

Journey to the end of the world

28/5/2020

 
We hope you enjoy Part 3 of the blog by Dr Stijn Thoolen, an ESA-sponsored medical doctor who is spending 12 months at the Concordia research station in Antarctica conducting experiments. Do take a look at Part 1 and Part 2 in his series of blogs, talking about his great adventure to the world's southernmost continent. 

Dr Stijn Thoolen

Medical Research Doctor, Concordia Research Station, Antarctica

The end of our world is full of surprises…
November 13, 2019, East-Antarctic plateau
My arm has gotten tired now of wiping the freshly formed ice from my airplane window every two minutes, but I am too excited to stop. I almost can’t believe it. Everywhere I look is ice. We have been flying over this ice sheet at 5000 meters altitude for about three hours now, with just nothing at all on the horizon. Completely nothing. And even the horizon seems to disappear at times, thanks to the surrealistic way in which the ever-present sunlight melts the white clouds and the ice together. An endless, motionless ocean of ice, that almost makes us disappear as well. I am just wondering if the pilots have a better idea of where we are, when suddenly two familiar towers appear in the distance. Concordia! My new home! And if I already had any expectations from all those preparations of the last months (years), they were now considerably exceeded for sure. What a special and bizarre place, on the middle of that ice sheet, out of nothing: that people live here!
Picture
1000 kilometers of ice in all directions. That people live here! Credits: ESA/IPEV/PNRA–S. Thoolen
Can you really prepare for a journey to the end of the world? I just hope that all those efforts of the past months haven’t been for nothing, but with all these surprises the past few days I am starting to doubt it. Since our arrival in Christchurch, New Zealand three days earlier it all went so terribly fast again. We hadn’t even left the airport yet, badly jetlagged and craving for a nice bed, when the IPEV/PNRA reception committee cheerfully told us that our next flight to Mario Zucchelli station was taking off sooner due to rising katabatic winds (I had to look it up as well). Here is your bag with polar gear, the key of your hotel room which you will never use, briefing in two hours, boarding in four, good luck!

Read More
<<Previous
Forward>>

    Welcome

    to the InnovaSpace Knowledge Station

    Categories

    All
    Aerospace
    Astronaut For A Day
    Extreme Environments
    Health
    Hub Español
    Hub Português
    Humanities
    KidsBlog
    Partners & Friends
    Research
    Space Analogues
    Space News
    Space Physiology
    Space Technology
    STEAM
    STEM
    Team News
    Telemedicine
    Valentina

    RSS Feed

Home

Mission

Team

​What We Do

Events

Blog

Contact

InnovaSpace Ltd - Registered in England & Wales - No. 11323249
UK Office: 88 Tideslea Path, London, SE280LZ
​Privacy Policy  I Terms & Conditions
© 2020 InnovaSpace, All Rights Reserved 

  • Home
  • Mission
  • Team
    • Board of Advisors
    • Global Partners & Friends
  • What We Do
    • Space4Women
  • Regional Hubs
    • Hub Português
    • Hub Español
  • Events
  • Blog
  • Resources
    • Library
    • Analog missions
    • Podcasts, Media & Websites
    • Scholarships & Grants
    • Societies & Organisations
  • Contact