InnovaSpace
  • Home
  • About Us
    • Our Mission
    • Our Team
    • Board of Advisors
    • Global Partners & Friends
  • What We Do
    • Overview
    • Courses
    • Working Groups
    • Outreach
  • Regional Hubs
    • Hub Português
    • Hub Español
  • eBook Store
  • Blog
  • Resources
    • Library
    • Analog missions
    • Podcasts, Media & Websites
    • Scholarships & Grants
    • Societies & Organisations
  • Contact
  • Home
  • About Us
    • Our Mission
    • Our Team
    • Board of Advisors
    • Global Partners & Friends
  • What We Do
    • Overview
    • Courses
    • Working Groups
    • Outreach
  • Regional Hubs
    • Hub Português
    • Hub Español
  • eBook Store
  • Blog
  • Resources
    • Library
    • Analog missions
    • Podcasts, Media & Websites
    • Scholarships & Grants
    • Societies & Organisations
  • Contact
Search

BLOGS VLOGS & VIEWS

Will human sperm be lost in microgravity?

9/6/2018

 

Adriana Bos-Mikich

Department of Morphological Sciences, ICBS, Federal University of Rio Grande do Sul, Brazil

The growing global interest in space programs, including space colonization strategies, will necessarily have to consider the reproductive process in outer space. Humans procreate through sexual reproduction, a near ubiquitous feature of living organisms on Earth. Furthermore, sexual reproduction is the fundamental strategy through which living organisms colonize new environments, as proven by Darwin´s theory of evolution. Successful colonization in a new niche represents the selection of adaptation-advantageous traits in well-adapted individuals and the elimination of those that do not express these advantageous characteristics. The individual advantageous/non-advantageous variability is achieved by new genetic combinations that occur during the formation of sex cells, a process called meiosis, which is unique and essential to sexual reproduction. In addition, the interaction between male and female gametes, leading to fertilisation and the creation of a new human being, is a critical feature of human reproduction. 
Male and female sex cells must join together to form a new individual, the zygote, however, living circumstances in outer space may not provide favourable conditions for male and female gametes to join together naturally. In addition, the highly developed physiological mechanisms involved in human sexual reproduction may not be as effective when subject to a new environment, such as would be experienced if humans colonised another planet. Moreover, the effects of the high levels of radiation observed in space and microgravity on mammalian reproduction are largely unknown. In view of these difficulties and uncertainties, it is quite likely the use of assisted reproduction technologies, known as fertility treatment, will need to be considered for this fundamental issue of future lives spent in space stations or other planetary habitats.

#HumanFertility #FertilityInMicorgravity #AssistedConception

Comments are closed.

    Welcome

    to the InnovaSpace Knowledge Station

    Categories

    All
    Aerospace
    Astronaut For A Day
    Astronomy
    Education
    Empowering Girls
    Extreme Environments
    Health
    Hub Español
    Hub Português
    Humanities
    KidsBlog
    Mars
    Outreach Activities
    Photo Blog
    Research
    Space Analogues
    Space Art
    Space Medicine
    Space News
    Space Physiology
    Space Psychology
    Space Technology
    Space Tourism
    STEM / STEAM
    Team News
    Telemedicine
    Working Groups

    RSS Feed

Home

Mission

Team

​What We Do

Events

Blog

Contact

InnovaSpace Ltd - Registered in England & Wales - No. 11323249
UK Office: 88 Tideslea Path, London, SE280LZ
​Privacy Policy  I Terms & Conditions
© 2021 InnovaSpace, All Rights Reserved 

  • Home
  • About Us
    • Our Mission
    • Our Team
    • Board of Advisors
    • Global Partners & Friends
  • What We Do
    • Overview
    • Courses
    • Working Groups
    • Outreach
  • Regional Hubs
    • Hub Português
    • Hub Español
  • eBook Store
  • Blog
  • Resources
    • Library
    • Analog missions
    • Podcasts, Media & Websites
    • Scholarships & Grants
    • Societies & Organisations
  • Contact