Learning from terrestrial healthcare: 3 ways to get medical autonomy for deep space travel13/5/2021
Jules LanceeBiomedical engineer, with a focus on emerging technologies and their role in the changing world of healthcare. He explores how they will impact the care delivered to patients, but is also equally interested in how they could benefit the future of long-term spaceflight. He believes both questions are opportunities for collaboration and inspiration! How would you deal with physical and mental health needs on a three-year round-trip to Mars? Those are questions I often think about and I would like to take you on a tour of solutions already out here on Earth, that might benefit those first astronauts to the Red Planet. Last week SpaceX performed another successful test of its Starship. The Starship is designed to eventually bring as many as a 100 people to Mars per flight. We’ve seen many recent plans for human spaceflight, both commercial and non-commercial and it’s about right to say that humankind will go on more and longer duration space missions. A lot of engineering research is going into the development of rockets and other technological advancement, but just as important as getting there, will be getting there alive and healthy! That’s not a trivial problem: Especially when we will go on deep space missions to Mars and beyond we will run into some basic limitations. There will be communication delays, we will have limited medical equipment on board due to limitations in mass, volume and electricity, and limited medical skills. A doctor can come along, but the doctor can also become sick, and of course, emergency evacuation to Earth will no longer be an option. Therefore, we will need a sense of medical autonomy for those astronauts on the go. We will send the most healthy human beings on such a mission, but a 3-year trip is a long time to stay healthy in the extreme environment of outer space. If not physical problems, then also psychological issues can become a risk to the success of the mission, which the crew themselves will need to deal with. In this quest for medical autonomy, I argue, we can learn from trends in healthcare and healthcare innovation on Earth, so let’s shortly take a trip back to Earth. In this short overview of the history of healthcare, a lot has happened since Hippocrates worked out the oath for medical professionals. None of the developments shown however, were as fundamental as the last one, the advent of digital health technologies. By becoming digital, solutions for healthcare have become smaller, faster, cheaper and in many cases, smarter. Solutions are leveraging Artificial Intelligence, Virtual and Augmented Reality, blockchain, voice recognition and 3D printing. These are just some of the technologies that are impacting healthcare. As a result of this impact, we see various shifts in healthcare, going from a reactive system to more preventive care and from a one-size-fits-all-healthcare to precision medicine. Most importantly, however, you see a shift in power. The relationship between the doctor and his or her patient is changing from a more dependent relationship, into a partnership, in which the patient is empowered with technology, to take care of his/her own health or medical issues. In other words, terrestrial patients are becoming more autonomous when it comes down to their health and care. It is this change, that is also needed for astronauts on their way to Mars. A different relationship between astronauts and their doctors in mission control is needed and this can be achieved, by leveraging new health technologies. Here are 3 terrestrial examples:
While the previous example was already getting quite personal, giving the feeling you are texting with a real person, the next example actually feels like a real human. It is a digital human that acts and reacts in REAL time, as a real person - translate this to the situation on Mars, talking without delays to your virtual doctor, your human-like doctor. These are just 3 examples of advanced Artificial Intelligence that are already a reality, but there are so many more centered around health and care, around the world. This has been termed the “unbundling of the hospital” (Zayna Khayat), where AI is taking over specific bits of work traditionally being done by nurses or doctors. All these things could function on Mars. These initiatives are not yet focused on delivering healthcare in space, but what if you are an astronaut on your way to Mars - imagine you have all of this in your pocket. …Talk about medical autonomy! I would love these two worlds to work together a lot more. For Earth applications space is a wonderful metaphor. If we can keep people healthy in space, imagine what we can do on Earth, in remote areas, or just around the corner... Moreover, we can learn from designing for the extreme, in a sector where just like healthcare, safety is always on top of mind. What would happen if we put the astronaut, a spaceship or Mars in the middle of this diagram above? For one of my global virtual programs around healthcare applications of exponential technologies, we on one occasion invited the space sector. It resulted in a valuable mutual exchange of insights, but this was just one time... Imagine if these people meet on a regular basis! So let’s go back to our ambition to explore space and our need for medical autonomy. I’d like to make this learning cycle and transfer of knowledge happen. Today I only mentioned solutions using Artificial Intelligence, but of course we will see efforts in Virtual and Augmented Reality, 3D printing and more, benefitting health up there in space and down here on Earth. Would you like to learn more about what healthcare innovation on Earth has to offer for space?
Feel free to reach out to me and let’s see what we can do! Comments are closed.
|
Welcometo the InnovaSpace Knowledge Station Categories
All
|