Blog written by Tanja Lehmann, Electrical Test Engineer The end of last year (5th Dec 2017) was very special as it saw the successful testing on a parabolic flight of the MIRIAM-2 (Main Inflated Reentry Into the Atmosphere Mission) technology, part of the ARCHIMEDES (Aerial Robot Carrying High resolution Imaging, Magnetometer Experiment and Direct Environmental Sensors) project of the Mars Society Deutschland e.V. ![]() MIRIAM-2 is due to be launched into space on a sounding rocket in the autumn of 2019 from Kiruna/Sweden to test the equipment and observe its re-entry behaviour through measurement instruments in the balloon instrument pod. The long term goal is to one day send the probe with its folded balloon (also known as a ballute) to Mars, where the balloon should deploy and inflate, creating drag and slowing the probe as it descends, giving time for measurements to be taken during atmospheric entry. Like any new technology, rigorous testing is essential to ensure it is capable of the task for which it was designed – so how can you test whether a balloon will deploy in the microgravity of space when you are on planet Earth? ![]() The answer is to simulate, as near as possible, the weightless environment that will be encountered in space, and on this occasion the solution lies in the use of a parabolic flight. Each parabola undertaken by the pilots of the specially adapted aircraft gives a zero gravity period of around 22 seconds, a period in which experiments can be conducted, and each flight carries out around 31 parabolas. Blog written by Dr. Lucas Rehnberg, InnovaSpace SGen Hub Coordinator ![]() In the build up to the AMADEE-18 mission in Oman in February 2018, the Austrian Space Forum is in the thick of preparation with the leadership team and the analogue astronauts (AA) undergoing intensive training. But not only this, the Austrian Space Forum, with all the excitement surrounding AMADEE-18, organised an additional weekend of training for the volunteers that are so eager to take part; this came in the form of Analog Mission Basic Training (AMBT) for AMADEE-18. I myself got caught up in this and am honoured to have taken part in this training to join fellow Mars pioneers and space enthusiasts on this endeavour to help pave the way for a future mission to Mars. ![]() The training weekend recently took place in the beautiful city of Innsbruck, Austria, just before the opening of the Christmas markets. In this quiet city surrounded by the Alps, an international group of young scientists with a shared passion for space gathered for training. What struck me immediately was the range of nations and backgrounds of all the volunteers that were involved. There were undergraduate science students, psychologists, IT experts, doctors and space engineers, to name a few. And these individuals came from across Europe and even as far as Oman to be a part of this mission. True to its mission goals, the Austrian Space Forum, with projects like AMADEE-18, is providing outreach and opportunities for young professionals and students to engage in space life sciences by providing hands on experience. The gathering of this group of volunteers shows how space has this universal appeal, able to be cross-generations and truly be multi-disciplinary. Lead by its President, Dr. Gernot Grömer, and the leadership team, we began our training in earnest. This training had been a fairly new innovation of the Austrian Space Forum, born from years of experience of conducting these analogue missions. With technology and software evolving so rapidly, it is easy to see how between missions individuals would need to re-validate or completely learn new skills and familiarise themselves with the latest changes in order to run a safe and efficient analogue mission. To this end, this training was developed in order to set a new standard of training for the volunteers and participants in these analogue missions. Blog written by Joan Vernikos PhD, Thirdage llc, Culpeper VA, USA ![]() While teaching Pharmacology at Ohio State University (OSU), I was lured to NASA Ames Research Center in 1964 by Dr.Eric Ogden, the Chair in Physiology at OSU and a cardiovascular physiologist, to join him in a small unit of five research scientists. My background had been in brain/stress regulation; there was also a microbiologist, an exercise physiologist, a metabolism and a biological rhythm scientist. Very little was known about what happens to humans in space; our observations from one flight to the next slowly enabled us to form a picture of what might be happening, but progress was gradual. We had to find a way to at least simulate the effects of space flight on the ground and facilitate research that would complement and help us understand what the consequences of living in the microgravity of space might be. ![]() Eventually, the optimal model adopted by the space science research community as a means for studying the physiological changes occurring in weightlessness during spaceflight was 6˚ Head Down Bed Rest (HDBR) or variations of this. In essence, by lying down continuously, the maximum influence of the force of gravity pulling down on us, Gz (head-to-toe), is minimised to Gx (across the chest). It was from such studies in healthy volunteers that I first noticed the similarity in changes seen in astronauts in space to those of people ageing on Earth. Muscle and bone wasting, reduced blood volume, a type of anemia, fluid and electrolyte shifts, cardiovascular deficits, and reduced aerobic capacity alterations in space all resulted on return to Earth in the astronauts experiencing fainting, and disturbed balance and coordination. These changes are also known to be the underlying causes of falls in the elderly. However, this conclusion was met with disbelief, including my own, since healthy young astronauts and HDBR volunteers recovered soon after returning to Earth or on becoming ambulatory. As knowledge accumulated and the duration of space missions grew longer, it has become clear that both the physiological response to spending time in space, as well as the ageing process on Earth, are gravity-dependent conditions. Manned exploration of Mars is really only a matter of time, and some even say it is a necessity that we step foot on Martian soil. Stephen Hawking declared at a lecture in 2008 "If the human race is to continue for another million years, we will have to boldly go where no one has gone before", while SpaceX entrepreneur Elon Musk confirmed his belief that "Humans need to be a multiplanet species" in an interview with website Slate in 2015. Currently there are two operational and mobile US Mars rovers exploring the surface of the planet, Opportunity landed successfully in 2004 and Curiosity in 2012, so there is already much we know about the surface and landscape of the Red Planet. What awaits any visitors to Mars is a very hostile and harsh environment; its atmosphere is about 100 times thinner than Earth's and is 95% carbon dioxide; temperatures can range from -125°C near the poles in winter to +20°C at midday near the equator; and the surface is covered in a layer of dust containing very fine-grained silicate minerals that tend to stick to surfaces and could be hazardous if breathed in. So the question is how to prepare astronauts for what they are likely to confront on an inhospitable planet that lies at least 55 million kilometres away? "An ounce of practice is worth more than tons of preaching." There is undoubtedly no landscape on Earth that can exactly match the harshness of the Mars conditions, however, we can get close, such as on Mauna Loa volcano, Hawaii where Hi-SEAS analogue missions take place, the Atacama desert in Peru/Chile with its Mars-like arid soils where only the most limited of bacteria can survive, and the Dhofar desert in Oman, where in February 2018 the AMADEE-18 Mars analogue will take place. The use of field research in an environment that mimics Mars conditions in some form is an excellent way of gaining experience, practicing for the 'real thing', but more importantly, understanding the advantages and limitations presented by remote science operations where access to and communications with a central control are subject to difficulties and delays.
|
Welcometo the InnovaSpace Knowledge Station Categories
All
|