Final blog from ESA-sponsored Dr Stijn Thoolen, from his series written while spending 12 months at the Concordia research station in Antarctica. Catch up on the rest of his fascinating blogs by following the links: Part 1, Part 2, Part 3, Part 4, Part 5, Part 6, Part 7, Part 8, Part 9, Part 10, Part 11, Part 12 Dr Stijn Thoolen Medical Research Doctor, Concordia Research Station, Antarctica L’Astrolabe icebreaker, December 15, 2020 Sunlight: 24 hours a day, but tomorrow, as we head further north, it will set again Temperature: Around 0 °C Mood: not sure how to describe it today. I am excited and just feel very lucky. It’s midnight. Since our departure some hours ago the sun has steadily moved towards the horizon behind us, and it has started to paint the sky in colours that make me think of winter again. Huge icebergs are slowly passing by, and every once in a while there is a bunch of curious penguins waving us goodbye from their ice floe. Not much earlier I saw a seal chilling, and there have been whales too. In the very far distance I can still recognise the enormous ice mass on which we have been living our lives the past year. It’s my last view of the Antarctic, and it’s perfect. Standing here alone on the deck of the Astrolabe surrounded by all this beauty I have found myself a special opportunity to appreciate once more where the #$%!! (beep) we have been all this time. It is just so different there on top of the ice, so far away from the rest of the world, that as we are slowly being re-introduced to civilisation I am having a hard time believing it actually happened. With all the changes that we have gone through lately and with all the new impressions time has gone fast, and it has made Concordia feel like a distant, almost unrealistic memory. Like ages ago, even though it has only been eight days since we left… It started when the ‘orange and fat’ people (and kiwis!) arrived at Concordia about a month ago. With the start of the summer campaign our winterover isolation had come to an abrupt end, and I remember the calm, safe and familiar environment of the ESA lab feeling surprisingly pleasant after some intense hours of new social interactions. As a positive summer energy took hold of the station and fresh ESA MD Nick gradually took over the lab, there was no way for me to hide anymore. Unavoidable steps out of our rigid routines, but at that ‘c’est l’Antarctique’ rate of change that isn’t always easy to keep up with.
Our departure from Concordia last week was much the same. Emotionally numb from a lack of realisation of what was happening (or a lack of sleep the night before…) it just passed by so quickly, and surprisingly smooth. I said my goodbyes without any affection for the tears around me. I gave the station a good last look for the sake of memory. But when the plane started accelerating for lift-off, suddenly that strong desire came up to make it stop and bring me back safely into the station. Apparently part of me wasn’t ready to leave at all. Too big steps too quickly I guess, but lucky for me there were pilots taking care of that... Learning from terrestrial healthcare: 3 ways to get medical autonomy for deep space travel13/5/2021
Jules LanceeBiomedical engineer, with a focus on emerging technologies and their role in the changing world of healthcare. He explores how they will impact the care delivered to patients, but is also equally interested in how they could benefit the future of long-term spaceflight. He believes both questions are opportunities for collaboration and inspiration! How would you deal with physical and mental health needs on a three-year round-trip to Mars? Those are questions I often think about and I would like to take you on a tour of solutions already out here on Earth, that might benefit those first astronauts to the Red Planet. Last week SpaceX performed another successful test of its Starship. The Starship is designed to eventually bring as many as a 100 people to Mars per flight. We’ve seen many recent plans for human spaceflight, both commercial and non-commercial and it’s about right to say that humankind will go on more and longer duration space missions. A lot of engineering research is going into the development of rockets and other technological advancement, but just as important as getting there, will be getting there alive and healthy! That’s not a trivial problem: Especially when we will go on deep space missions to Mars and beyond we will run into some basic limitations. There will be communication delays, we will have limited medical equipment on board due to limitations in mass, volume and electricity, and limited medical skills. A doctor can come along, but the doctor can also become sick, and of course, emergency evacuation to Earth will no longer be an option. Therefore, we will need a sense of medical autonomy for those astronauts on the go. We will send the most healthy human beings on such a mission, but a 3-year trip is a long time to stay healthy in the extreme environment of outer space. If not physical problems, then also psychological issues can become a risk to the success of the mission, which the crew themselves will need to deal with. In this quest for medical autonomy, I argue, we can learn from trends in healthcare and healthcare innovation on Earth, so let’s shortly take a trip back to Earth. In this short overview of the history of healthcare, a lot has happened since Hippocrates worked out the oath for medical professionals. None of the developments shown however, were as fundamental as the last one, the advent of digital health technologies. By becoming digital, solutions for healthcare have become smaller, faster, cheaper and in many cases, smarter. Solutions are leveraging Artificial Intelligence, Virtual and Augmented Reality, blockchain, voice recognition and 3D printing. These are just some of the technologies that are impacting healthcare.
As a result of this impact, we see various shifts in healthcare, going from a reactive system to more preventive care and from a one-size-fits-all-healthcare to precision medicine. Most importantly, however, you see a shift in power. The relationship between the doctor and his or her patient is changing from a more dependent relationship, into a partnership, in which the patient is empowered with technology, to take care of his/her own health or medical issues. In other words, terrestrial patients are becoming more autonomous when it comes down to their health and care. It is this change, that is also needed for astronauts on their way to Mars. A different relationship between astronauts and their doctors in mission control is needed and this can be achieved, by leveraging new health technologies. Here are 3 terrestrial examples: As ESA-sponsored Dr Stijn Thoolen comes closer to the end of his year at the Concordia research station in Antarctica, he begins to reflect on his experiences of the last year and the journey homewards. Enjoy the rest of his fascinating blog series by following the links: Part 1, Part 2, Part 3, Part 4, Part 5, Part 6, Part 7, Part 8, Part 9, Part 10 Dr Stijn ThoolenMedical Research Doctor, Concordia Research Station, Antarctica Concordia, October 4, 2020 Sunlight: about 14 hours per day Windchill temperature: -85 °C Mood: excited, but there is a pinch of nostalgia. Already… It’s 1:00 AM. I am lying outside on the roof, together with Ines (glaciologist), Elisa (cook) and Andrea (vehicle mechanic). There is a full moon shining on us, and Mars is right next to it. I am not much of an astronomer, but its bright color stands out so clearly from all the other celestial objects that even I can recognize it instantly as the Red Planet. Looking to the southwest I see Jupiter and Saturn. Also pretty hard to miss. Usually that is where I find the Milky Way, but there is too much light now, even at this hour. An amber color brightens the horizon, beyond which I now realize again there are just so many miles of ice (something easily taken for granted here, but thinking back to that inbound flight to Concordia last year does the trick) separating us from the rest of the world. In front of it all, I look at the frosty metal bars, which always looked so surrealistic to me when I saw pictures of them back home. They have gone through winter as well…
The return of the sun was cool. ‘Here comes the sun’ (you know, that one from the Beatles) was heard all over the station while we impatiently and excitedly tried to catch a first glimpse of it mid-August. Since that moment the skies have become more and more blue, and the snow more and more bright. I have experienced the gradual return of daylight over the past weeks with a positive and fresh feeling, and a sense of anticipation has started to take hold of the station. Who are the people who will replace us? What are our plans after Concordia? I remember myself some weeks ago, lying in exactly the same position as I am right now, outside against a snow dune, sheltered from the wind and with a pleasant -50 degrees Celsius (I realize this perception must be taken relatively…), alone, and just letting the sunshine touch my face again. A special moment, that reminded me of how pleasant summer conditions are going to be.
Space psychology is an extremely significant area of study. Combining insights from all areas of the wider field (i.e., organizational, industrial, cognitive, psychiatry), it aims to optimise human behaviour and cognition in space. In terms of its history, space psychology has received varying degrees of attention over time. Whilst its importance was acknowledged at the inception of NASA in 1958; in the early 1990s Dr Patricia Santy (a NASA flight surgeon and psychiatrist) illustrated the industry’s relative disregard for the area, claiming that the application of psychology to space was running 20-30 years behind most other areas of medicine. However, with ever-increasing pressure from academics (i.e., the Committee on Space Biology and Medicine), the establishment of continuously inhabited long-term research stations with multinational crews (i.e., with astronauts joining cosmonauts on Mir in 1993, and the first stay on the ISS in 2000), and a number of high-profile incidents, for example, the theorised termination of the Soviet Soyuz T14-Salyut 7 mission due to depression and the attempted murder by astronaunt Lisa Nowak, the relevance of psychological issues has become increasingly pertinent. Research within the field is predominantly focused on ensuring selection/training programmes prepare astronauts for the psychological demands of space travel, developing effective inflight support strategies and helping individuals re-adapt following their return to Earth. Studies can be conducted both in-orbit, and in terrestrial simulators and space analogs (i.e., undersea vessels and polar outposts), which attempt to produce a degree of environmental realism, and have aided in identifying the consequences of the intrapsychic/interpersonal stressors that astronauts encounter, such as team conflict, impaired communication/”psychological closing”, social isolation, threat of disaster, high-stakes/demanding work, public scrutiny, microgravity, radiation exposure, immobility etc... Such research findings can then be applied to develop models of successful crew performance (i.e., in terms of gender composition, and types of goals) and produce effective intervention strategies, like enhancement medications and therapeutic software. For instance, optical computer recognition scanners have been developed by NASA to track astronaut facial expressions and assess potential changes in their mood, allowing for personalized intervention strategies (i.e. computerized CBT treatment). Notably, whilst much research focuses on studying/overcoming the negative aspects of space travel, a robust finding is the salutogenic “overview effect” (White, 1987), which refers to how viewing the Earth from space fosters a sense of appreciation/wonder, spirituality and unity amongst crew members. It is theorised by Yaden et al. (2016) that this emotional reaction is a result of the juxtaposition between the Earth’s features and the black backdrop of space, which emphasises the beauty, vitality, and fragility of Earth. With forecasted missions focusing on the potential for interplanetary (and eventually interstellar) travel, we need to prepare accordingly. Not only will these missions be much more protracted in terms of their distance/duration (with the longest period spent in space currently standing at 14 months, and a round trip to Mars predicted to take 2.5 years), they will also be subject to the pressure of larger, multinational crews, with no hope of evacuation, lack of protection from the Earth’s magnetic field, and distance-related communication delays (averaging 25 minutes to Mars/500 minutes to Neptune and back). Additionally, astronauts will not be able to observe the Earth and derive the aforementioned associated benefits of this experience; coined the ‘Earth-out-of-view phenomenon’ (Kanas, 2015; Kanas & Manzey, 2008), which may magnify potential feelings of homesickness and isolation. As such, we need to develop effective strategies to counteract these novel stressors, with researchers considering the benefit of fitting protective outer shields to isolated parts of spaceships (where astronauts spend the majority of their time) in order to mitigate against the effect of radiation from cosmic rays, email messages that conclude with suggested responses in order to reduce communication times, and virtual reality systems/on-board telescopes to minimise feelings of separation from Earth. Having discussed the historical development of space psychology, the scope of research conducted, and the forecasted future of the field, I hope I have impressed on you the significance of such an exciting area of study. Managing human behaviour in space is an interdisciplinary effort, and as the government monopoly on spaceflight diminishes (i.e., with the launch of commercial/private space ventures like SpaceX), and the number/complexity of missions increases, the importance of space psychology will become ever more apparent.
ESA-sponsored Dr Stijn Thoolen delivers the last part of his 'Let's Talk Science' blogs, written during his year at the Concordia research station in Antarctica. Catch-up with his previous blogs at Part 1, Part 2, Part 3, Part 4, Part 5, Part 6, Part 7, Part 8, Part 9 Dr Stijn ThoolenMedical Research Doctor, Concordia Research Station, Antarctica But there is more to the ESA lab, and I have saved the best for last. So, now that you are probably overloaded with theories and facts, let’s talk about something very different. Let’s talk about sex! And before we continue, you have to promise me to turn on another song, to end this blog with some appropriate groove.
But maybe there is more to it than it seems, and what Cherry-Garrard says is not necessarily easy to do. We are human, after all. Sexuality is one of our core features, vital for our existence, and for many it is a fundamental source of pleasure, intimacy, bonding, and social relations. Researchers have shown how sexual deprivation can lead to frustration, anger and even depression, and also seen from a group perspective anecdotal accounts have shown that sexual desire and related feelings of jealousy and competition can lead to adaptation problems in extreme environments. Including Concordia! But the problem with sex it that we don’t easily talk about it. Perhaps it is so close to our core that opening up about it can make us feel vulnerable. A sensitive topic, and while researchers are currently busy figuring out how to compose future space crews in terms of culture, personality and gender, data about sexual behaviour and its effects on team dynamics in extreme environments is basically non-existent! How do we cope? How, why, and when do we suffer? Recent political debates and scandals of sexual harassment have already highlighted the importance of having a work environment free of sexual hostility, and if you ask me, it would be irresponsible to send humans on a multi-billion dollar long-duration mission to Mars without being able to answer these questions! As such, the project SWICE (‘sexual well-being and sexual security in isolated, confined and extreme environments’), for the first time in spaceflight research history, is breaking the taboo. As the first study of its kind, it aims to gather basic information about human sexuality while living in isolation and confinement, and it does so by making us in Concordia talk:
‘How often does another Concordia inhabitant asks me for sexual favours?’ (we better forget the jokes at the dinner table…), ‘How often does another Concordia inhabitant produces sexually explicit graffiti for display at Concordia?’ (we better forget the sexually explicit Play-Doh creations we made with the whole crew last month…), ‘How enjoyable is your sexual life right now?’, ‘How often do you masturbate?’, ‘How often do you experience an orgasm?’ (Damn, you want to know everything!). If someone asked you – “what do you want to do when you become an adult?" – what would your response be? Now, imagine me as a 14-year-old student at an art school, and one day going to a Red Cross course and recognizing that you love the idea of the First Rescue and Emergency services. My first answer was always – Astronaut! But… what should I do now? Astronaut or Doctor ...? Solution? Helicopter flight physician! But how can I do this thing…is it possible? Yes, it is! I first studied medicine and became an anesthetist and intensivist. And so it was… once I graduated and then specialized in anesthesia, I began to frequent the world of Helicopter Rescue. A fantastic job that combines flight, wonderful landscapes (the Dolomites ...) and the human factor. A lot of different situations every day and in different places. The helicopter flight physician is responsible for providing casualties with emergency medical assistance at the accident site, as well as attending to patients during primary and secondary missions. The scope of activities also involves recovering patients from topographically difficult terrain by means of a rescue hoist. This applies exactly from the time the patient is put into your care until you hand them over to the medical staff responsible at the destination hospital. I remember one early afternoon in September 2013, the Helicopter Emergency Medical Service (HEMS) Dispatching Centre of Treviso, Italy received a call from a person who told the operator that her cousin, a 53-year-old man with a previous history of inferior myocardial infarction, had suddenly fallen down while walking at home. While dispatching the nearest ambulance, the dispatcher provided CPR pre-arrival instructions to the caller, according to standard protocols. An EMS helicopter, staffed by an emergency physician (namely, me!) and a nurse, was dispatched to the scene. The first emergency unit, staffed by a nurse and an emergency technician, reached the patient within 10 minutes of the call and found the woman performing chest compressions as instructed by the dispatching center operator. My team in the helicopter reached the patient 10 minutes after the first unit started ACLS (Advanced Cardiac Life Support). The cardiac rhythm was a persistent ventricular fibrillation and the decision was made to apply a LUCAS-3 chest compressions device to the patient, who was then transported directly to the hospital and catheterization laboratory. Selective percutaneous coronary angiography was performed with ongoing continuous mechanical chest compressions. Coronary angioplasty was performed on two coronary arteries. Five days after resuscitation, the patient was extubated and was alert and oriented. After 16 days he was discharged from the Intensive Care Unit and transferred to a post-intensive care unit. The patient survived without any neurological damage despite prolonged resuscitation and a call-to-ROSC (return of spontaneous circulation) interval of nearly 2 hours. The immediate beginning of chest compressions by the caller and uninterrupted CPR by medical teams preserved the brain from ischemic damage. The mechanical chest compression device permitted safe and effective CPR during helicopter transportation directly to the catheterization laboratory, which permitted the removal of the coronary artery occlusions, which were preventing the ROSC. This is why I think this is an amazing job… A little about the author: Alessandro Forti As well as being a certified specialist in Cardiac-Anaesthetics, Intensive Care Medicine and Aerospace Medicine, currently working as an intensivist, cardiac-anesthesiologist and HEMS doctor in northern Italy, Alessandro has a passion for space clinical medicine, which began in 2012 following a post-graduate course in Space Medicine at the San Donato Milanese University. He has been involved in space medical research as a COSPAR (Committee on Space Research) collaborator and acted as a reviewer of many scientific articles for the journal Advances in Space Research (Elsevier). He was also Coordinator of the HEMS base in Pieve di Cadore-Italy from 2018-2020. Alessandro is Principal Investigator for the research Mechanical Cardiopulmonary Resuscitation in Simulated Microgravity and Hypergravity Conditions: a manikin study, which took place during the 4th. parabolic flight campaign in Dübendorf (CH) in June 2020, in collaboration with the SkyLab Foundation, CNES and DLR. His main areas of interest are space clinical medicine, CPR in different environments (mountain, avalanche victims, hypothermia, hyper and microgravity), ongoing CPR with ECMO (Extracorporeal Membrane Oxygenation) neuroprotection and neuromonitoring during DHCA (Deep Hypothermia Cardiac Arrest) in Cardiac Surgery.
The next instalment of a fascinating blog series by ESA-sponsored Dr Stijn Thoolen who spent a year at the Concordia research station in Antarctica. Catch-up with his previous blogs at Part 1, Part 2, Part 3, Part 4, Part 5, Part 6, Part 7 Dr Stijn ThoolenMedical Research Doctor, Concordia Research Station, Antarctica And so we keep delivering. Questionnaires about stress, physical and mental wellbeing, questionnaires about nutrition habits, stool samples, saliva samples, blood samples, taste tests with taste strips, smell tests with ‘Sniffin’ Sticks’. I make pictures of what I am eating twice a day, and our cook records our menu a whole year long. And, perhaps best of all, we all take a sachet every day, without even knowing if it contains a probiotic supplement, or nothing but just powder… āThis reminds me of the dentist. And this of flower fields when I was young. And this one is industrial banana for sure!ā The āSniffinā Sticksā induce vivid memories, but do our smell and taste change in this understimulating environment? And how does that relate to our eating habits? Credits: ESA/IPEV/PNRAāS. Thoolen This time the tests are for another study called ICELAND (‘immune and microbiome changes in environments with limited antigen diversity’). ICELAND doesn’t focus on altitude, but instead uses the homogeneous environment of Concordia, another stressor to our body and mind, as a testbed for examining changes in immune health. Have you ever thought of the idea that, just like in Concordia or in space, a lack of new bacteria and viruses can actually deteriorate your immune system? Have you ever considered that we may be too hygienic? Just like losing muscles when we spend too much time on the couch, or losing skills if we don’t practice our brain, we can lose immune function when it is not stimulated, and according to the ‘hygiene hypothesis’ this may be one of the reasons for an increased incidence of asthma and skin inflammation in children in developed countries. In a similar way, prolonged isolation and confinement in the stressful and ‘clean’ environments of Antarctica or space is thought to increase susceptibility to infections and even allergies! But the immune system is complex, and the many interactions it holds with other body systems such as our digestive system and our brain are just being discovered. For example, changes in nutrition can have an effect on the composition and health of our gut bacteria, which in recent years have been found to play an important role in the development of immune-related diseases such as allergies and cancer. Other studies in addition have found gut health to be related to mental wellbeing as well. So can we maintain a healthy brain and a healthy immune system if we maintain a healthy gut? We still have much to learn about ourselves, and ICELAND aims to investigate these interesting interactions. Hence those daily sachets: comparing the test outcomes between those of us who took gut bacteria-stimulating probiotics and those who didn’t can give us valuable information about its potential to counter these health risks! Note: this article was originally posted on the ESA blog website (LINK) and permission has been obtained to republish it here.
Julio RezendeDirector of Innovation at FAPERN/Coordinator of Space Analog Station @HabitatMarte The space experience must be creative, cooperative and respectful. This is what the partnership established between the analog space station Habitat Marte and InnovaSpace is all about. The operationalization of the Habitat Marte project has permitted the bringing together of numerous enthusiastic people from the space area, this being the case for the virtual meeting that took place between myself and Thais Russomano, CEO of InnovaSpace. When I see how much more we can do to help children and young people through the debate, education and popularisation of science using the space theme, this generates a high state of consciousness. It’s excellent having the possibility of interacting with the right people in order to create genuine relationships and interest in the professional growth and development of others, thus collaborating for a better world, with more justice and prosperity, especially for those who would like to include themselves more in the aerospace field. Many people find the space theme to be very inspiring and it seems to foster confidence and a great sense of personal fulfilment. I observe this in the trajectory of many young people who see this area as a future professional field
The fascinating blog series chronicling a year in the life of ESA-sponsored Dr Stijn Thoolen at the Concordia research station in Antarctica continues. Catch-up with his previous blogs at Part 1, Part 2, Part 3, Part 4, Part 5, Part 6 Dr Stijn ThoolenMedical Research Doctor, Concordia Research Station, Antarctica Concordia, July 28, 2020 Sunlight: none, but the skies are turning colours again! Windchill temperature: -83°C Mood: some days a little tired, and on others, like the skies, full of colour If you have read my previous posts, you have probably had enough of the beautiful-environment-and-working-together-drivel, and I am guessing you are now thinking something along the lines of: weren’t you supposed to do space research? Good question, and it makes me realise that perhaps it is time for something more interesting: science! But I am not sure if an ESA blog can go without any music, so before we continue here is a nice tune to walk you through:
Take, for example, the altitude. Here in Concordia we live at an altitude that is equivalent to about 3800 meters above sea level at the equator. As such, it's as if the air were to contain about 40% less oxygen for us to breath, and you definitely feel that when you arrive here by plane. Low energy, panting with the slightest exercise, waking up gasping for air multiple times a night, headache, dizziness, loss of appetite. Some really get sick from it, and in rare cases people have to be sent back to the coast due to life-threatening build-up of fluid in the lungs or brain! Yet, in 1978 Messner and Habeler reached the summit of Mount Everest at an altitude of 8848 meters without using any supplemental oxygen at all. How? They allowed time for their bodies to adapt. At Concordia it usually takes a few days before you feel better. As your body senses a decrease in oxygen pressure it immediately tries to save your cells from getting damaged by sucking in more air (breathing) and pump more oxygen through the body (by increasing heart rate), and subsequently starts up a remarkable cascade of physiological processes that eventually leads to an increased production of red blood cells. As a result, the composition of our blood can drastically change over weeks, to help deliver sufficient oxygen to each of our cells. Pretty cool, don’t you think? Even though after eight months I still find myself hyperventilating up the stairs and having miserable nights every once in a while, at least it allows me to go to beautiful places like Concordia! The adaptation however comes with a trade-off: if the need for oxygen-carrying capacity of the blood is too high (at higher altitudes, where there is less oxygen) and too many red blood cells are made, the blood can become so thick that it increases the risk of blood clotting, high blood pressure in the lungs, and even heart failure! Such health issues have been seen in some people living permanently at high altitude. So how healthy actually is a year of adaptation at Concordia? Knowing that similar low oxygen conditions may exist in future space habitats for technical, economical and safety reasons, and considering the simultaneous blood volume alterations usually seen as an effect of microgravity, answering that question is important to understand astronaut health and safety during future long-duration space missions. The ANTARCV study (‘alterations in total red blood cell volume and plasma volume during a one-year confinement in Antarctica: effect of hypoxia’) is implemented this year to do so. Each month the crew comes to the ESA lab for a lucky treatment of vein punctures, and an awkward procedure of breathing a very small and safe dose of carbon monoxide through small, restrictive tubes. This way I can determine our blood volumes. Besides I analyze how thick our blood is, store blood samples for further analysis in Europe, and we all wear a watch one week a month to record our activity. That way we make sure that the changes we see in blood volumes are not just a result of changes in physical activity. You can understand the crew loves me for it… ANTARCV on full speed. By administering carbon monoxide and determining the increase in its concentration in the blood, we can calculate how many red blood cells are circulating through the body/ANTARCV op volle snelheid. Door koolstofmonoxide toe te dienen en de concentratietoename te bepalen in het bloed, kunnen we berekenen hoeveel rode bloedcellen er door het lichaam circuleren. Credits: ESA/IPEV/PNRAāS. Thoolen Still, all of us are participating in the research, and that is awesome! You see, doing human research here can be quite a challenge, not only because of language barriers, limited data transfer possibilities, or complex transportation logistics, but mostly so because the participation in these experiments is entirely voluntary. None of us works here primarily to serve as a test subject, and it is not that I can force anyone really… So to make sure I come home after a year with sufficient interesting data, I better make sure that everyone is happy with what we are doing here. For me perhaps a tricky mix between work and private life, but all for the good cause of science! After all, who doesn’t want to be part of the space program, bring benefit to future hivernauts and astronauts, and on top of that help to understand health challenges of our present-day society? Note: this article was originally posted on the ESA blog website (LINK) and permission has been obtained to republish it here.
Luis E. Luque Álvarez, M.Mus.Ed.Violin Teacher, Kittenberger Kálmán Primary & Arts School, Nagymaros, Hungary. Member of ELGRA Across centuries playing and listening to music has been an important human psycho-physiological communication path with or without lyrics. It is clear that in space sciences music has intervened in the life of most scientists as a motivational and alternative health resource. Pythagoras of Samos studied the physiological effect of certain scales and melodies on the human body, he believed each different modal scale would induce a different mood state to the listener or player. Several astronomers like the Galilei family, and William and Caroline Herschel, among others, were strongly connected to music, indeed they were exceptional musicians themselves.
And it was during the Apollo 9 mission when Rusty Schweickart carried a Sony Tape recorder, strictly for the purpose of providing a musical environment for the astronauts. Since then, astronauts have often highlighted the importance of music for their mission performance and have taken their music with them, indeed a tradition of wake-up calls from Mission Control has long been established to begin the astronauts’ days. These anecdotes indicate how strong is the importance of music, at least psychologically, perhaps physiologically too, for astronauts under the stress and pressures caused by the confinement of a spaceflight mission. Music for Space ProjectAs a music student in 2016 I became curious about the idea of experimenting with the effect of listening to and playing music in space. At that time, I didn’t find much scientific literature about the effects of music in microgravity, hypogravity or hypergravity. Music has been highlighted only as a leisure practice and for psychological support, though I believe it provides much more than that. In 2018, I was lucky enough to have the support of the ESA Education Office, DLR, European Astronaut Centre and the European Low Gravity Research Association, teaming up with some French and Hungarian students to perform a first experiment using personalized music intervention as a psycho-physiological countermeasure under exposure to hypergravity in a Short Arm Human Centrifuge. During the ESA Spin Your Thesis Human Edition programme, our student team, along with two others (SpinKings and Spin Doctors), were able to perform some very interesting research in different space physiology fields. Our research involved 10 male participants, divided equally into two groups of 5, and spinning them in the centrifuge at 1Gz and 1.5Gz of hypergravity, with one group listening to a different style of music per spinning protocol, while the other group were spun without music. We recorded many different variables, including sociocultural background, psychological mood states, muscle tone, and galvanic skin response, among others. Preliminary results have shown there is a clear tendency in the effect of music to decrease the tension, anxiety levels compared with the control group without music, and there was a certain stabilisation of stress muscles, which previous centrifuge studies have shown to be affected in a different way. Currently, the data is being re-analysed with the cooperation of scientists at ESA aiming to publish the complete data results. Since the Spin Your Thesis Human Edition campaign, the audio device with stereo signal installed specifically for the music experiment still remains attached to the short arm human centrifuge, where nowadays ESA astronauts and study participants can enjoy their favourite music playlist on the centrifuge.
This experiment was the initial phase of the Music For Space project, which aims to continue the research with music as a psycho-physiological countermeasure to improve astronaut’s health with alternative medicine methods and perhaps one day for Earth citizens as well. We have in music history thousands of music styles, genres, instrumentations, and performance versions. To determine their specific benefits or disadvantages, we would need to perform more terrestrial tests, such as using a human centrifuge, parabolic flights, and analog simulations. In addition to music listening, I aim to measure in space how the playing of musical instruments could support brain, muscles, and bone health. Further studies could lead us to obtain enough data to approach an adequate and systematic music therapy method for spaceflight crews. I encourage all students and young researchers from fields that seem to be far from space sciences to feel curious, to pursue your dreams and to try the student experiments offered by the ESA Education Office. These are an unforgettable life experience and a wonderful opportunity for students to contribute to space-related research. |
Welcometo the InnovaSpace Knowledge Station Categories
All
|